大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。
但我很好奇,你是如何计算或近似你的算法的复杂性的?
当前回答
如果您希望根据经验而不是通过分析代码来估计代码的顺序,您可以插入一系列不断增加的n值,并为代码计时。在对数刻度上绘制你的时间。如果代码是O(x^n),值应该落在斜率为n的直线上。
这比只研究代码有几个优点。首先,您可以看到您是否在运行时接近其渐近顺序的范围内。此外,您可能会发现一些您认为是O(x)阶的代码实际上是O(x^2)阶的代码,例如,因为花在库调用上的时间。
其他回答
如果您希望根据经验而不是通过分析代码来估计代码的顺序,您可以插入一系列不断增加的n值,并为代码计时。在对数刻度上绘制你的时间。如果代码是O(x^n),值应该落在斜率为n的直线上。
这比只研究代码有几个优点。首先,您可以看到您是否在运行时接近其渐近顺序的范围内。此外,您可能会发现一些您认为是O(x)阶的代码实际上是O(x^2)阶的代码,例如,因为花在库调用上的时间。
大O表示算法时间复杂度的上界。它通常与处理数据集(列表)一起使用,但也可以在其他地方使用。
下面是一些在C代码中如何使用它的例子。
假设我们有一个n个元素的数组
int array[n];
如果我们想要访问数组的第一个元素,这将是O(1)因为不管数组有多大,它总是需要相同的常数时间来获得第一项。
x = array[0];
如果我们想在列表中找到一个数字:
for(int i = 0; i < n; i++){
if(array[i] == numToFind){ return i; }
}
这是O(n)因为我们最多要遍历整个列表才能找到我们要的数。大O仍然是O(n),即使我们可能在第一次尝试中找到我们的数字并运行一次循环,因为大O描述了算法的上界(omega是下界,theta是紧界)。
当我们讲到嵌套循环时:
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
array[j] += 2;
}
}
这是O(n²)因为对于外层循环的每一次循环(O(n))我们都必须再次遍历整个列表,所以n乘以后只剩下n²。
这仅仅是触及表面,但当你分析更复杂的算法时,涉及证明的复杂数学就会发挥作用。希望这至少能让你熟悉基本知识。
不要忘记考虑空间的复杂性,如果内存资源有限,这也是一个值得关注的问题。例如,你可能听到有人想要一个常数空间算法,这基本上是说算法所占用的空间量不依赖于代码中的任何因素。
有时,复杂性可能来自于某个东西被调用了多少次,循环执行的频率,内存分配的频率,等等,这是回答这个问题的另一部分。
最后,大O可以用于最坏情况、最佳情况和摊销情况,其中通常用最坏情况来描述算法可能有多糟糕。
我不知道如何通过编程来解决这个问题,但人们做的第一件事是我们对算法的特定模式进行抽样,比如4n²+ 2n + 1我们有两个规则:
如果我们有一个项的和,增长率最大的项被保留,其他项被省略。 如果我们有几个因数的乘积,常数因数就省略了。
如果我们化简f(x),其中f(x)是所做操作数量的公式,(上文解释的4n²+ 2n + 1),我们得到大O值[在这种情况下是O(n²)]。但这必须考虑到程序中的拉格朗日插值,这可能很难实现。如果真正的大O值是O(2^n)我们可能有O(x^n)这样的东西,那么这个算法可能是不可编程的。但如果有人证明我错了,给我代码. . . .
虽然知道如何计算出特定问题的大O时间是有用的,但了解一些一般情况可以在很大程度上帮助您在算法中做出决策。
以下是一些最常见的案例,摘自http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions:
O(1) -确定一个数字是偶数还是奇数;使用常量大小的查找表或哈希表
O(logn) -用二分搜索在排序数组中查找一个项
O(n) -在未排序的列表中查找一个项;两个n位数相加
O(n2) -用一个简单的算法乘以两个n位数字;添加两个n×n矩阵;冒泡排序或插入排序
O(n3) -用简单的算法乘以两个n×n矩阵
O(cn) -使用动态规划找到旅行商问题的(精确)解;使用蛮力判断两个逻辑语句是否等效
O(n!) -通过暴力搜索解决旅行推销员问题
O(nn) -通常用来代替O(n!)来推导更简单的渐近复杂度公式