大多数拥有计算机科学学位的人肯定知道大O代表什么。 它帮助我们衡量一个算法的可扩展性。

但我很好奇,你是如何计算或近似你的算法的复杂性的?


当前回答

对于代码A,外层循环将执行n+1次,“1”时间表示检查i是否仍然满足要求的过程。内循环运行n次,n-2次....因此,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²)。

对于代码B,虽然内部循环不会介入并执行foo(),但内部循环将执行n次,这取决于外部循环的执行时间,即O(n)

其他回答

小提示:大O符号是用来表示渐近复杂度的(也就是说,当问题的大小增长到无穷大时),它隐藏了一个常数。

这意味着在O(n)和O(n2)的算法之间,最快的并不总是第一个算法(尽管总是存在一个值n,这样对于大小为>n的问题,第一个算法是最快的)。

注意,隐藏常数很大程度上取决于实现!

此外,在某些情况下,运行时并不是输入大小为n的确定函数。以快速排序为例:对n个元素的数组进行排序所需的时间不是一个常数,而是取决于数组的初始配置。

有不同的时间复杂度:

最坏的情况(通常是最简单的,但并不总是很有意义) 一般情况下(通常很难弄清楚…) ...

一个很好的介绍是R. Sedgewick和P. Flajolet的《算法分析导论》。

正如你所说,过早的优化是万恶之源,(如果可能的话)在优化代码时真的应该总是使用分析。它甚至可以帮助您确定算法的复杂性。

大O表示算法时间复杂度的上界。它通常与处理数据集(列表)一起使用,但也可以在其他地方使用。

下面是一些在C代码中如何使用它的例子。

假设我们有一个n个元素的数组

int array[n];

如果我们想要访问数组的第一个元素,这将是O(1)因为不管数组有多大,它总是需要相同的常数时间来获得第一项。

x = array[0];

如果我们想在列表中找到一个数字:

for(int i = 0; i < n; i++){
    if(array[i] == numToFind){ return i; }
}

这是O(n)因为我们最多要遍历整个列表才能找到我们要的数。大O仍然是O(n),即使我们可能在第一次尝试中找到我们的数字并运行一次循环,因为大O描述了算法的上界(omega是下界,theta是紧界)。

当我们讲到嵌套循环时:

for(int i = 0; i < n; i++){
    for(int j = i; j < n; j++){
        array[j] += 2;
    }
}

这是O(n²)因为对于外层循环的每一次循环(O(n))我们都必须再次遍历整个列表,所以n乘以后只剩下n²。

这仅仅是触及表面,但当你分析更复杂的算法时,涉及证明的复杂数学就会发挥作用。希望这至少能让你熟悉基本知识。

将算法分解成你知道的大O符号,并通过大O运算符组合。这是我知道的唯一办法。

欲了解更多信息,请查看有关该主题的维基百科页面。

对于代码A,外层循环将执行n+1次,“1”时间表示检查i是否仍然满足要求的过程。内循环运行n次,n-2次....因此,0+2+..+(n-2)+n= (0+n)(n+1)/2= O(n²)。

对于代码B,虽然内部循环不会介入并执行foo(),但内部循环将执行n次,这取决于外部循环的执行时间,即O(n)

虽然知道如何计算出特定问题的大O时间是有用的,但了解一些一般情况可以在很大程度上帮助您在算法中做出决策。

以下是一些最常见的案例,摘自http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions:

O(1) -确定一个数字是偶数还是奇数;使用常量大小的查找表或哈希表

O(logn) -用二分搜索在排序数组中查找一个项

O(n) -在未排序的列表中查找一个项;两个n位数相加

O(n2) -用一个简单的算法乘以两个n位数字;添加两个n×n矩阵;冒泡排序或插入排序

O(n3) -用简单的算法乘以两个n×n矩阵

O(cn) -使用动态规划找到旅行商问题的(精确)解;使用蛮力判断两个逻辑语句是否等效

O(n!) -通过暴力搜索解决旅行推销员问题

O(nn) -通常用来代替O(n!)来推导更简单的渐近复杂度公式