我试图将一个范围的数字转换为另一个,保持比率。数学不是我的强项。

I have an image file where point values may range from -16000.00 to 16000.00 though the typical range may be much less. What I want to do is compress these values into the integer range 0-100, where 0 is the value of the smallest point, and 100 is the value of the largest. All points in between should keep a relative ratio even though some precision is being lost I'd like to do this in python but even a general algorithm should suffice. I'd prefer an algorithm where the min/max or either range can be adjusted (ie, the second range could be -50 to 800 instead of 0 to 100).


当前回答

我没有为此挖掘BNF,但Arduino文档有一个很好的函数示例,它是分解的。我可以在Python中通过简单地添加一个def重命名到remap(因为map是内置的)并删除类型强制转换和花括号(即删除所有的'long')来使用它。

原始

long map(long x, long in_min, long in_max, long out_min, long out_max)
{
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

Python

def remap(x, in_min, in_max, out_min, out_max):
  return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

https://www.arduino.cc/en/reference/map

其他回答

这是一个简单的线性变换。

new_value = ( (old_value - old_min) / (old_max - old_min) ) * (new_max - new_min) + new_min

因此,将10000在-16000到16000的范围内转换为0到100的新范围会得到:

old_value = 10000
old_min = -16000
old_max = 16000
new_min = 0
new_max = 100

new_value = ( ( 10000 - -16000 ) / (16000 - -16000) ) * (100 - 0) + 0
          = 81.25
NewValue = (((OldValue - OldMin) * (NewMax - NewMin)) / (OldMax - OldMin)) + NewMin

或者更容易读懂:

OldRange = (OldMax - OldMin)  
NewRange = (NewMax - NewMin)  
NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin

或者如果你想保护旧范围为0的情况(OldMin = OldMax):

OldRange = (OldMax - OldMin)
if (OldRange == 0)
    NewValue = NewMin
else
{
    NewRange = (NewMax - NewMin)  
    NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin
}

注意,在这种情况下,我们被迫任意选择一个可能的新范围值。根据上下文,明智的选择可能是:NewMin(见示例),NewMax或(NewMin + NewMax) / 2

我个人使用支持泛型的helper类(Swift 3,4)。x兼容)

struct Rescale<Type : BinaryFloatingPoint> {
    typealias RescaleDomain = (lowerBound: Type, upperBound: Type)

    var fromDomain: RescaleDomain
    var toDomain: RescaleDomain

    init(from: RescaleDomain, to: RescaleDomain) {
        self.fromDomain = from
        self.toDomain = to
    }

    func interpolate(_ x: Type ) -> Type {
        return self.toDomain.lowerBound * (1 - x) + self.toDomain.upperBound * x;
    }

    func uninterpolate(_ x: Type) -> Type {
        let b = (self.fromDomain.upperBound - self.fromDomain.lowerBound) != 0 ? self.fromDomain.upperBound - self.fromDomain.lowerBound : 1 / self.fromDomain.upperBound;
        return (x - self.fromDomain.lowerBound) / b
    }

    func rescale(_ x: Type )  -> Type {
        return interpolate( uninterpolate(x) )
    }
}

Ex:

   let rescaler = Rescale<Float>(from: (-1, 1), to: (0, 100))
    
   print(rescaler.rescale(0)) // OUTPUT: 50

捷径/简化方案

 NewRange/OldRange = Handy multiplicand or HM
 Convert OldValue in OldRange to NewValue in NewRange = 
 (OldValue - OldMin x HM) + NewMin

韦恩

增加了KOTLIN版本的数学解释

假设我们有一个介于(OMin, Omax)之间的刻度,我们在这个范围内有一个值X

我们要把它转换成比例(NMin, NMax)

我们知道X,我们需要找到Y,比值必须相等:

 => (Y-NMin)/(NMax-NMin) = (X-OMin)/(OMax-OMin)  
      
 =>  (Y-NMin)/NewRange = (X-OMin)/OldRange 

 =>   Y = ((X-OMin)*NewRange)/oldRange)+NMin  Answer
   

从实用主义的角度来看,我们可以这样写这个问句:

 private fun  convertScale(oldValueToConvert:Int): Float {
       // Old Scale 50-100
       val oldScaleMin = 50
       val oldScaleMax = 100
       val oldScaleRange= (oldScaleMax - oldScaleMin)

       //new Scale 0-1
       val newScaleMin = 0.0f
       val newScaleMax = 1.0f
       val newScaleRange=  (newScaleMax - newScaleMin)
     
       return ((oldValueToConvert - oldScaleMin)* newScaleRange/ oldScaleRange) + newScaleMin
    }

JAVA

/**
     * 
     * @param x
     * @param inMin
     * @param inMax
     * @param outMin
     * @param outMax
     * @return
     */
        private long normalize(long x, long inMin, long inMax, long outMin, long outMax) {
          long outRange = outMax - outMin;
          long inRange  = inMax - inMin;
          return (x - inMin) *outRange / inRange + outMin;
        }

用法:

float brightness = normalize(progress, 0, 10, 0,255);