如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
如何按特定键的值对词典列表进行排序?鉴于:
[{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
按名称排序时,应为:
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
当前回答
import operator
要按key='name'对词典列表进行排序:
list_of_dicts.sort(key=operator.itemgetter('name'))
要按key='age'对词典列表进行排序,请执行以下操作:
list_of_dicts.sort(key=operator.itemgetter('age'))
其他回答
使用来自Perl的Schwartzian变换,
py = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
do
sort_on = "name"
decorated = [(dict_[sort_on], dict_) for dict_ in py]
decorated.sort()
result = [dict_ for (key, dict_) in decorated]
给予
>>> result
[{'age': 10, 'name': 'Bart'}, {'age': 39, 'name': 'Homer'}]
有关Perl Schwartzian转换的更多信息:
在计算机科学中,施瓦茨变换是一种Perl编程用于提高项目列表排序效率的习惯用法。这当排序为实际上基于元素,其中计算该属性是一项密集的操作应执行最少次数。施瓦茨学派Transform的显著之处在于它不使用命名的临时数组。
如果不需要字典的原始列表,可以使用自定义键函数使用sort()方法对其进行修改。
关键功能:
def get_name(d):
""" Return the value of a key in a dictionary. """
return d["name"]
要排序的列表:
data_one = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
将其分类到位:
data_one.sort(key=get_name)
如果需要原始列表,请调用sorted()函数,将列表和键函数传递给它,然后将返回的排序列表分配给新变量:
data_two = [{'name': 'Homer', 'age': 39}, {'name': 'Bart', 'age': 10}]
new_data = sorted(data_two, key=get_name)
正在打印data_one和new_data。
>>> print(data_one)
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
>>> print(new_data)
[{'name': 'Bart', 'age': 10}, {'name': 'Homer', 'age': 39}]
我一直是lambda过滤器的忠实粉丝。然而,若考虑到时间复杂性,这并不是最好的选择。
第一个选项
sorted_list = sorted(list_to_sort, key= lambda x: x['name'])
# Returns list of values
第二个选项
list_to_sort.sort(key=operator.itemgetter('name'))
# Edits the list, and does not return a new list
快速比较执行时间
# First option
python3.6 -m timeit -s "list_to_sort = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}, {'name':'Faaa', 'age':57}, {'name':'Errr', 'age':20}]" -s "sorted_l=[]" "sorted_l = sorted(list_to_sort, key=lambda e: e['name'])"
1000000个循环,最好为3个:每个循环0.736µsec
# Second option
python3.6 -m timeit -s "list_to_sort = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}, {'name':'Faaa', 'age':57}, {'name':'Errr', 'age':20}]" -s "sorted_l=[]" -s "import operator" "list_to_sort.sort(key=operator.itemgetter('name'))"
1000000个循环,最好为3个:每个循环0.438µsec
如果性能是一个问题,我会使用operator.itemgetter而不是lambda,因为内置函数比手工制作的函数执行得更快。根据我的测试,itemgetter函数的执行速度似乎比lambda快20%左右。
从…起https://wiki.python.org/moin/PythonSpeed:
同样,内置函数的运行速度也比手工构建的等效函数快。例如,map(operator.add,v1,v2)比map(lambda x,y:x+y,v1,v2)更快。
下面是lambda与itemgetter排序速度的比较。
import random
import operator
# Create a list of 100 dicts with random 8-letter names and random ages from 0 to 100.
l = [{'name': ''.join(random.choices(string.ascii_lowercase, k=8)), 'age': random.randint(0, 100)} for i in range(100)]
# Test the performance with a lambda function sorting on name
%timeit sorted(l, key=lambda x: x['name'])
13 µs ± 388 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
# Test the performance with itemgetter sorting on name
%timeit sorted(l, key=operator.itemgetter('name'))
10.7 µs ± 38.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
# Check that each technique produces the same sort order
sorted(l, key=lambda x: x['name']) == sorted(l, key=operator.itemgetter('name'))
True
这两种技术都以相同的顺序对列表进行排序(通过在代码块中执行最终语句来验证),但第一种排序速度稍快。
my_list = [{'name':'Homer', 'age':39}, {'name':'Bart', 'age':10}]
my_list.sort(lambda x,y : cmp(x['name'], y['name']))
my_list现在将是您想要的。
或者更好:
自从Python2.4以来,有一个关键的论点更高效、更整洁:
my_list = sorted(my_list, key=lambda k: k['name'])
…lambda比operator.itemgetter更容易理解,但您的里程数可能会有所不同。