我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?

例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。


当前回答

Two different kinds of parameters can be adjusted during the training of an ANN, the weights and the value in the activation functions. This is impractical and it would be easier if only one of the parameters should be adjusted. To cope with this problem a bias neuron is invented. The bias neuron lies in one layer, is connected to all the neurons in the next layer, but none in the previous layer and it always emits 1. Since the bias neuron emits 1 the weights, connected to the bias neuron, are added directly to the combined sum of the other weights (equation 2.1), just like the t value in the activation functions.1

它不实用的原因是,您同时调整权重和值,因此对权重的任何更改都会抵消对先前数据实例有用的值的更改……在不改变值的情况下添加偏置神经元可以让你控制层的行为。

此外,偏差允许您使用单个神经网络来表示类似的情况。考虑由以下神经网络表示的AND布尔函数:

(来源:aihorizon.com)

W0对应于b。 W1对应x1。 W2对应于x2。

A single perceptron can be used to represent many boolean functions. For example, if we assume boolean values of 1 (true) and -1 (false), then one way to use a two-input perceptron to implement the AND function is to set the weights w0 = -3, and w1 = w2 = .5. This perceptron can be made to represent the OR function instead by altering the threshold to w0 = -.3. In fact, AND and OR can be viewed as special cases of m-of-n functions: that is, functions where at least m of the n inputs to the perceptron must be true. The OR function corresponds to m = 1 and the AND function to m = n. Any m-of-n function is easily represented using a perceptron by setting all input weights to the same value (e.g., 0.5) and then setting the threshold w0 accordingly. Perceptrons can represent all of the primitive boolean functions AND, OR, NAND ( 1 AND), and NOR ( 1 OR). Machine Learning- Tom Mitchell)

阈值是偏置,w0是与偏置/阈值神经元相关的权重。

其他回答

下面是一些进一步的插图,展示了一个简单的2层前馈神经网络在一个双变量回归问题上的结果。权重被随机初始化,并使用标准的ReLU激活。正如我前面的答案所总结的那样,没有偏差,relu网络无法在(0,0)处偏离零。

扩展zfy的解释:

一个输入,一个神经元,一个输出的方程如下:

y = a * x + b * 1    and out = f(y)

其中x是输入节点的值,1是偏置节点的值; Y可以直接作为输出,也可以传递给一个函数,通常是一个sigmoid函数。还要注意,偏差可以是任何常数,但为了使一切更简单,我们总是选择1(可能这太常见了,zfy没有显示和解释它)。

你的网络试图学习系数a和b来适应你的数据。 所以你可以看到为什么添加元素b * 1可以让它更好地适应更多的数据:现在你可以改变斜率和截距。

如果你有一个以上的输入,你的方程将是这样的:

y = a0 * x0 + a1 * x1 + ... + aN * 1

请注意,这个方程仍然描述一个神经元,一个输出网络;如果你有更多的神经元,你只需在系数矩阵中增加一个维度,将输入相乘到所有节点,然后将每个节点的贡献相加。

可以写成向量化的形式

A = [a0, a1, .., aN] , X = [x0, x1, ..., 1]
Y = A . XT

即,将系数放在一个数组中,(输入+偏差)放在另一个数组中,你就有了你想要的解决方案,作为两个向量的点积(你需要转置X的形状是正确的,我写了XT a 'X转置')

所以最后你也可以看到你的偏差只是一个输入来代表输出的那部分实际上是独立于你的输入的。

单独修改神经元WEIGHTS只用于操纵传递函数的形状/曲率,而不是它的平衡/零交叉点。

引入偏置神经元允许您沿着输入轴水平(左/右)移动传递函数曲线,同时保持形状/曲率不变。 这将允许网络产生不同于默认值的任意输出,因此您可以自定义/移动输入到输出映射以满足您的特定需求。

请看这里的图表解释: http://www.heatonresearch.com/wiki/Bias

当您使用ann时,您很少了解您想要学习的系统的内部结构。有些东西没有偏见是学不来的。例如,看一下下面的数据:(0,1),(1,1),(2,1),基本上是一个将任何x映射到1的函数。

如果你有一个单层网络(或线性映射),你无法找到解决方案。然而,如果你有偏见,那就无关紧要了!

在理想情况下,偏差还可以将所有点映射到目标点的平均值,并让隐藏的神经元模拟该点的差异。

偏差决定了你的体重旋转的角度。

在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。

假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是

{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}

现在我们需要找到一个决策边界,理想的边界应该是:

看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。

但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:

现在边界平行于y轴。

我们要旋转边界。如何?

通过改变W。

因此,我们使用学习规则函数W'=W+P:

W'=W+P等价于W'=W+ bP,而b=1。

因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。

你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。