我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
我知道梯度下降和反向传播算法。我不明白的是:什么时候使用偏见是重要的,你如何使用它?
例如,在映射AND函数时,当我使用两个输入和一个输出时,它不会给出正确的权重。然而,当我使用三个输入(其中一个是偏差)时,它给出了正确的权重。
当前回答
当您使用ann时,您很少了解您想要学习的系统的内部结构。有些东西没有偏见是学不来的。例如,看一下下面的数据:(0,1),(1,1),(2,1),基本上是一个将任何x映射到1的函数。
如果你有一个单层网络(或线性映射),你无法找到解决方案。然而,如果你有偏见,那就无关紧要了!
在理想情况下,偏差还可以将所有点映射到目标点的平均值,并让隐藏的神经元模拟该点的差异。
其他回答
术语偏差用于调整最终输出矩阵,就像y截距一样。例如,在经典方程y = mx + c中,如果c = 0,那么直线将始终经过0。添加偏差项为我们的神经网络模型提供了更大的灵活性和更好的泛化。
神经网络中没有偏差的一层只不过是输入向量与矩阵的乘法。(输出向量可以通过一个sigmoid函数进行归一化,然后用于多层人工神经网络,但这并不重要。)
这意味着你在使用一个线性函数,因此一个全0的输入将总是映射到一个全0的输出。对于某些系统,这可能是一个合理的解决方案,但一般来说,它的限制太大了。
使用偏置,可以有效地为输入空间增加另一个维度,它总是取值1,因此可以避免输入向量全为0。你不会因此失去任何一般性,因为你训练的权重矩阵不需要是满射的,所以它仍然可以映射到之前可能的所有值。
二维安:
对于一个将二维映射到一维的ANN,就像在复制AND或or(或XOR)函数一样,你可以把一个神经元网络想象成做以下事情:
在二维平面上标记输入向量的所有位置。为布尔值,你想标记(1,1),(1,1),(1,1),(1,1)。你的人工神经网络现在做的是在二维平面上画一条直线,把正输出和负输出分开。
如果没有偏差,这条直线必须经过零,而有偏差,你可以把它放在任何地方。 因此,您将看到,如果没有偏差,您将面临与函数的问题,因为您不能同时将(1,-1)和(-1,1)放在负一侧。(他们不允许在线。)对于OR函数,问题是相等的。然而,有了偏见,就很容易划清界限。
请注意,在这种情况下,异或函数即使有偏差也无法求解。
偏差决定了你的体重旋转的角度。
在二维图表中,权重和偏差可以帮助我们找到输出的决策边界。
假设我们需要构建一个AND函数,输入(p)-输出(t)对应该是
{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}
现在我们需要找到一个决策边界,理想的边界应该是:
看到了吗?W垂直于边界。因此,我们说W决定了边界的方向。
但是,第一次找到正确的W是很困难的。大多数情况下,我们随机选择原始W值。因此,第一个边界可能是这样的:
现在边界平行于y轴。
我们要旋转边界。如何?
通过改变W。
因此,我们使用学习规则函数W'=W+P:
W'=W+P等价于W'=W+ bP,而b=1。
因此,通过改变b(bias)的值,就可以决定W’和W之间的夹角,这就是“ANN的学习规则”。
你也可以阅读Martin T. Hagan / Howard B. Demuth / Mark H. Beale的《神经网络设计》,第4章“感知器学习规则”。
扩展zfy的解释:
一个输入,一个神经元,一个输出的方程如下:
y = a * x + b * 1 and out = f(y)
其中x是输入节点的值,1是偏置节点的值; Y可以直接作为输出,也可以传递给一个函数,通常是一个sigmoid函数。还要注意,偏差可以是任何常数,但为了使一切更简单,我们总是选择1(可能这太常见了,zfy没有显示和解释它)。
你的网络试图学习系数a和b来适应你的数据。 所以你可以看到为什么添加元素b * 1可以让它更好地适应更多的数据:现在你可以改变斜率和截距。
如果你有一个以上的输入,你的方程将是这样的:
y = a0 * x0 + a1 * x1 + ... + aN * 1
请注意,这个方程仍然描述一个神经元,一个输出网络;如果你有更多的神经元,你只需在系数矩阵中增加一个维度,将输入相乘到所有节点,然后将每个节点的贡献相加。
可以写成向量化的形式
A = [a0, a1, .., aN] , X = [x0, x1, ..., 1]
Y = A . XT
即,将系数放在一个数组中,(输入+偏差)放在另一个数组中,你就有了你想要的解决方案,作为两个向量的点积(你需要转置X的形状是正确的,我写了XT a 'X转置')
所以最后你也可以看到你的偏差只是一个输入来代表输出的那部分实际上是独立于你的输入的。
在我的硕士论文中的几个实验中(例如第59页),我发现偏差可能对第一层很重要,但特别是在最后的完全连接层,它似乎没有发挥很大的作用。
这可能高度依赖于网络架构/数据集。