我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

使用包装器函数来处理StopIteration

您可以为生成器生成函数编写一个简单的包装器函数,用于跟踪生成器耗尽的时间。它将使用生成器在迭代结束时抛出的StopIteration异常来完成此操作。

import types

def generator_wrapper(function=None, **kwargs):
    assert function is not None, "Please supply a function"
    def inner_func(function=function, **kwargs):
        generator = function(**kwargs)
        assert isinstance(generator, types.GeneratorType), "Invalid function"
        try:
            yield next(generator)
        except StopIteration:
            generator = function(**kwargs)
            yield next(generator)
    return inner_func

如上所述,当包装器函数捕获到StopIteration异常时,它只是重新初始化生成器对象(使用函数调用的另一个实例)。

然后,假设你定义了如下所示的生成器提供函数,你可以使用Python函数装饰器语法来隐式包装它:

@generator_wrapper
def generator_generating_function(**kwargs):
    for item in ["a value", "another value"]
        yield item

其他回答

如果你的生成器在某种意义上是纯的,它的输出只依赖于传递的参数和步长,并且你希望生成的生成器是可重新启动的,这里有一个排序代码片段可能很方便:

import copy

def generator(i):
    yield from range(i)

g = generator(10)
print(list(g))
print(list(g))

class GeneratorRestartHandler(object):
    def __init__(self, gen_func, argv, kwargv):
        self.gen_func = gen_func
        self.argv = copy.copy(argv)
        self.kwargv = copy.copy(kwargv)
        self.local_copy = iter(self)

    def __iter__(self):
        return self.gen_func(*self.argv, **self.kwargv)

    def __next__(self):
        return next(self.local_copy)

def restartable(g_func: callable) -> callable:
    def tmp(*argv, **kwargv):
        return GeneratorRestartHandler(g_func, argv, kwargv)

    return tmp

@restartable
def generator2(i):
    yield from range(i)

g = generator2(10)
print(next(g))
print(list(g))
print(list(g))
print(next(g))

输出:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[]
0
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
1
>>> def gen():
...     def init():
...         return 0
...     i = init()
...     while True:
...         val = (yield i)
...         if val=='restart':
...             i = init()
...         else:
...             i += 1

>>> g = gen()
>>> g.next()
0
>>> g.next()
1
>>> g.next()
2
>>> g.next()
3
>>> g.send('restart')
0
>>> g.next()
1
>>> g.next()
2

使用包装器函数来处理StopIteration

您可以为生成器生成函数编写一个简单的包装器函数,用于跟踪生成器耗尽的时间。它将使用生成器在迭代结束时抛出的StopIteration异常来完成此操作。

import types

def generator_wrapper(function=None, **kwargs):
    assert function is not None, "Please supply a function"
    def inner_func(function=function, **kwargs):
        generator = function(**kwargs)
        assert isinstance(generator, types.GeneratorType), "Invalid function"
        try:
            yield next(generator)
        except StopIteration:
            generator = function(**kwargs)
            yield next(generator)
    return inner_func

如上所述,当包装器函数捕获到StopIteration异常时,它只是重新初始化生成器对象(使用函数调用的另一个实例)。

然后,假设你定义了如下所示的生成器提供函数,你可以使用Python函数装饰器语法来隐式包装它:

@generator_wrapper
def generator_generating_function(**kwargs):
    for item in ["a value", "another value"]
        yield item

好吧,你说你想多次调用一个生成器,但初始化是昂贵的…像这样的东西怎么样?

class InitializedFunctionWithYield(object):
    def __init__(self):
        # do expensive initialization
        self.start = 5

    def __call__(self, *args, **kwargs):
        # do cheap iteration
        for i in xrange(5):
            yield self.start + i

y = InitializedFunctionWithYield()

for x in y():
    print x

for x in y():
    print x

或者,你也可以创建自己的类,遵循迭代器协议,并定义某种“reset”函数。

class MyIterator(object):
    def __init__(self):
        self.reset()

    def reset(self):
        self.i = 5

    def __iter__(self):
        return self

    def next(self):
        i = self.i
        if i > 0:
            self.i -= 1
            return i
        else:
            raise StopIteration()

my_iterator = MyIterator()

for x in my_iterator:
    print x

print 'resetting...'
my_iterator.reset()

for x in my_iterator:
    print x

https://docs.python.org/2/library/stdtypes.html#iterator-types http://anandology.com/python-practice-book/iterators.html

可能最简单的解决方案是将昂贵的部分包装在一个对象中,并将其传递给生成器:

data = ExpensiveSetup()
for x in FunctionWithYield(data): pass
for x in FunctionWithYield(data): pass

这样,就可以缓存昂贵的计算。

如果您可以同时将所有结果保存在RAM中,那么可以使用list()将生成器的结果物化到一个普通列表中并使用该列表。