我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:
MemoryError Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')
...
MemoryError:
有什么帮助吗?
当前回答
函数read_csv和read_table几乎是一样的。但在程序中使用read_table函数时,必须分配分隔符“,”。
def get_from_action_data(fname, chunk_size=100000):
reader = pd.read_csv(fname, header=0, iterator=True)
chunks = []
loop = True
while loop:
try:
chunk = reader.get_chunk(chunk_size)[["user_id", "type"]]
chunks.append(chunk)
except StopIteration:
loop = False
print("Iteration is stopped")
df_ac = pd.concat(chunks, ignore_index=True)
其他回答
你可以尝试sframe,它和pandas有相同的语法,但是允许你操作比你的RAM大的文件。
对于大数据,我建议你使用"dask"库,例如:
# Dataframes implement the Pandas API
import dask.dataframe as dd
df = dd.read_csv('s3://.../2018-*-*.csv')
你可以在这里阅读更多的文档。
另一个很好的选择是使用modin,因为所有的功能都与pandas相同,但它利用了分布式数据框架库,如dask。
在我的项目中,另一个高级库是数据表。
# Datatable python library
import datatable as dt
df = dt.fread("s3://.../2018-*-*.csv")
在使用chunksize选项之前,如果你想确定你想要在@unutbu提到的分块for循环中写入的进程函数,你可以简单地使用nrows选项。
small_df = pd.read_csv(filename, nrows=100)
一旦确定流程块准备好了,就可以将其放入整个数据帧的分块for循环中。
如果你有一个csv文件,有数百万个数据条目,你想要加载完整的数据集,你应该使用dask_cudf,
import dask_cudf as dc
df = dc.read_csv("large_data.csv")
我是这样说的:
chunks=pd.read_table('aphro.csv',chunksize=1000000,sep=';',\
names=['lat','long','rf','date','slno'],index_col='slno',\
header=None,parse_dates=['date'])
df=pd.DataFrame()
%time df=pd.concat(chunk.groupby(['lat','long',chunk['date'].map(lambda x: x.year)])['rf'].agg(['sum']) for chunk in chunks)