如何生成列表的所有排列?例如:

permutations([])
[]

permutations([1])
[1]

permutations([1, 2])
[1, 2]
[2, 1]

permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]

当前回答

这是初始排序后生成排列的渐近最优方式O(n*n!)。

有n个!最多进行一次置换,且具有下一次置换(..),以O(n)时间复杂度运行

在3个步骤中,

找到最大的j,使a[j]可以增加以最小可行量增加a[j]找到扩展新a[0..j]的字典最少方法

'''
Lexicographic permutation generation

consider example array state of [1,5,6,4,3,2] for sorted [1,2,3,4,5,6]
after 56432(treat as number) ->nothing larger than 6432(using 6,4,3,2) beginning with 5
so 6 is next larger and 2345(least using numbers other than 6)
so [1, 6,2,3,4,5]
'''
def hasNextPermutation(array, len):
    ' Base Condition '
    if(len ==1):
        return False
    '''
    Set j = last-2 and find first j such that a[j] < a[j+1]
    If no such j(j==-1) then we have visited all permutations
    after this step a[j+1]>=..>=a[len-1] and a[j]<a[j+1]

    a[j]=5 or j=1, 6>5>4>3>2
    '''
    j = len -2
    while (j >= 0 and array[j] >= array[j + 1]):
        j= j-1
    if(j==-1):
        return False
    # print(f"After step 2 for j {j}  {array}")
    '''
    decrease l (from n-1 to j) repeatedly until a[j]<a[l]
    Then swap a[j], a[l]
    a[l] is the smallest element > a[j] that can follow a[l]...a[j-1] in permutation
    before swap we have a[j+1]>=..>=a[l-1]>=a[l]>a[j]>=a[l+1]>=..>=a[len-1]
    after swap -> a[j+1]>=..>=a[l-1]>=a[j]>a[l]>=a[l+1]>=..>=a[len-1]

    a[l]=6 or l=2, j=1 just before swap [1, 5, 6, 4, 3, 2] 
    after swap [1, 6, 5, 4, 3, 2] a[l]=5, a[j]=6
    '''
    l = len -1
    while(array[j] >= array[l]):
        l = l-1
    # print(f"After step 3 for l={l}, j={j} before swap {array}")
    array[j], array[l] = array[l], array[j]
    # print(f"After step 3 for l={l} j={j} after swap {array}")
    '''
    Reverse a[j+1...len-1](both inclusive)

    after reversing [1, 6, 2, 3, 4, 5]
    '''
    array[j+1:len] = reversed(array[j+1:len])
    # print(f"After step 4 reversing {array}")
    return True

array = [1,2,4,4,5]
array.sort()
len = len(array)
count =1
print(array)
'''
The algorithm visits every permutation in lexicographic order
generating one by one
'''
while(hasNextPermutation(array, len)):
    print(array)
    count = count +1
# The number of permutations will be n! if no duplicates are present, else less than that
# [1,4,3,3,2] -> 5!/2!=60
print(f"Number of permutations: {count}")


其他回答

我使用了一种基于阶乘数系统的算法——对于长度为n的列表,您可以逐项组装每个排列,从每个阶段留下的项目中进行选择。第一项有n个选项,第二项有n-1个选项,最后一项只有一个选项,因此可以使用阶乘数系统中数字的数字作为索引。这是数字0到n-1对应于词典顺序中的所有可能的排列。

from math import factorial
def permutations(l):
    permutations=[]
    length=len(l)
    for x in xrange(factorial(length)):
        available=list(l)
        newPermutation=[]
        for radix in xrange(length, 0, -1):
            placeValue=factorial(radix-1)
            index=x/placeValue
            newPermutation.append(available.pop(index))
            x-=index*placeValue
        permutations.append(newPermutation)
    return permutations

permutations(range(3))

输出:

[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]

此方法是非递归的,但在我的计算机上速度稍慢,xrange在n!太大,无法转换为C长整数(我的n=13)。当我需要它的时候,它已经足够了,但它远没有itertools.permutations。

另一种解决方案:

def permutation(flag, k =1 ):
    N = len(flag)
    for i in xrange(0, N):
        if flag[i] != 0:
            continue
        flag[i] = k 
        if k == N:
            print flag
        permutation(flag, k+1)
        flag[i] = 0

permutation([0, 0, 0])
def permuteArray (arr):

    arraySize = len(arr)

    permutedList = []

    if arraySize == 1:
        return [arr]

    i = 0

    for item in arr:

        for elem in permuteArray(arr[:i] + arr[i + 1:]):
            permutedList.append([item] + elem)

        i = i + 1    

    return permutedList

我不打算在一个新的行中穷尽所有的可能性,以使它有点独特。

在我看来,一个很明显的方式可能是:

def permutList(l):
    if not l:
            return [[]]
    res = []
    for e in l:
            temp = l[:]
            temp.remove(e)
            res.extend([[e] + r for r in permutList(temp)])

    return res

这是初始排序后生成排列的渐近最优方式O(n*n!)。

有n个!最多进行一次置换,且具有下一次置换(..),以O(n)时间复杂度运行

在3个步骤中,

找到最大的j,使a[j]可以增加以最小可行量增加a[j]找到扩展新a[0..j]的字典最少方法

'''
Lexicographic permutation generation

consider example array state of [1,5,6,4,3,2] for sorted [1,2,3,4,5,6]
after 56432(treat as number) ->nothing larger than 6432(using 6,4,3,2) beginning with 5
so 6 is next larger and 2345(least using numbers other than 6)
so [1, 6,2,3,4,5]
'''
def hasNextPermutation(array, len):
    ' Base Condition '
    if(len ==1):
        return False
    '''
    Set j = last-2 and find first j such that a[j] < a[j+1]
    If no such j(j==-1) then we have visited all permutations
    after this step a[j+1]>=..>=a[len-1] and a[j]<a[j+1]

    a[j]=5 or j=1, 6>5>4>3>2
    '''
    j = len -2
    while (j >= 0 and array[j] >= array[j + 1]):
        j= j-1
    if(j==-1):
        return False
    # print(f"After step 2 for j {j}  {array}")
    '''
    decrease l (from n-1 to j) repeatedly until a[j]<a[l]
    Then swap a[j], a[l]
    a[l] is the smallest element > a[j] that can follow a[l]...a[j-1] in permutation
    before swap we have a[j+1]>=..>=a[l-1]>=a[l]>a[j]>=a[l+1]>=..>=a[len-1]
    after swap -> a[j+1]>=..>=a[l-1]>=a[j]>a[l]>=a[l+1]>=..>=a[len-1]

    a[l]=6 or l=2, j=1 just before swap [1, 5, 6, 4, 3, 2] 
    after swap [1, 6, 5, 4, 3, 2] a[l]=5, a[j]=6
    '''
    l = len -1
    while(array[j] >= array[l]):
        l = l-1
    # print(f"After step 3 for l={l}, j={j} before swap {array}")
    array[j], array[l] = array[l], array[j]
    # print(f"After step 3 for l={l} j={j} after swap {array}")
    '''
    Reverse a[j+1...len-1](both inclusive)

    after reversing [1, 6, 2, 3, 4, 5]
    '''
    array[j+1:len] = reversed(array[j+1:len])
    # print(f"After step 4 reversing {array}")
    return True

array = [1,2,4,4,5]
array.sort()
len = len(array)
count =1
print(array)
'''
The algorithm visits every permutation in lexicographic order
generating one by one
'''
while(hasNextPermutation(array, len)):
    print(array)
    count = count +1
# The number of permutations will be n! if no duplicates are present, else less than that
# [1,4,3,3,2] -> 5!/2!=60
print(f"Number of permutations: {count}")