我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
当前回答
def sort_np_array(x, column=None, flip=False):
x = x[np.argsort(x[:, column])]
if flip:
x = np.flip(x, axis=0)
return x
数组在原来的问题:
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
问题作者所期望的sort_np_array函数的结果:
sort_np_array(a, column=1, flip=False)
[2]: array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
其他回答
#用于按列1排序
indexofsort=np.argsort(dataset[:,0],axis=-1,kind='stable')
dataset = dataset[indexofsort,:]
从NumPy邮件列表中,这里有另一个解决方案:
>>> a
array([[1, 2],
[0, 0],
[1, 0],
[0, 2],
[2, 1],
[1, 0],
[1, 0],
[0, 0],
[1, 0],
[2, 2]])
>>> a[np.lexsort(np.fliplr(a).T)]
array([[0, 0],
[0, 0],
[0, 2],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 2],
[2, 1],
[2, 2]])
你可以按照Steve Tjoa的方法对多个列进行排序,使用像归并排序这样的稳定排序,并从最不重要的列到最重要的列对索引进行排序:
a = a[a[:,2].argsort()] # First sort doesn't need to be stable.
a = a[a[:,1].argsort(kind='mergesort')]
a = a[a[:,0].argsort(kind='mergesort')]
这是按第0列,第1列,第2列排序。
import numpy as np
a=np.array([[21,20,19,18,17],[16,15,14,13,12],[11,10,9,8,7],[6,5,4,3,2]])
y=np.argsort(a[:,2],kind='mergesort')# a[:,2]=[19,14,9,4]
a=a[y]
print(a)
期望的输出是[[6、5、4、3、2],[11、10、9、8、7]、[12]16日,15日,14日,13日,[17]19日21日20日,18日)
请注意,argsort(numArray)返回numArray的索引,因为它应该以排序的方式排列。
例子
x=np.array([8,1,5])
z=np.argsort(x) #[1,3,0] are the **indices of the predicted sorted array**
print(x[z]) #boolean indexing which sorts the array on basis of indices saved in z
答案是[1,5,8]
我也遇到过类似的问题。
我的问题:
我想计算SVD,并需要对特征值进行降序排序。但是我想保持特征值和特征向量之间的映射。 我的特征值在第一行对应的特征向量在它下面的同列。
我想对一个二维数组按第一行降序按列排序。
我的解决方案
a = a[::, a[0,].argsort()[::-1]]
那么这是如何工作的呢?
a[0,]是我要排序的第一行。
现在我使用argsort来获取下标的顺序。
我使用[::-1]是因为我需要降序。
最后我使用了一个[::,…]以获得按正确顺序排列的视图。