我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
当前回答
如果有人想在程序的关键部分使用排序,这里是不同方案的性能比较:
import numpy as np
table = np.random.rand(5000, 10)
%timeit table.view('f8,f8,f8,f8,f8,f8,f8,f8,f8,f8').sort(order=['f9'], axis=0)
1000 loops, best of 3: 1.88 ms per loop
%timeit table[table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
import pandas as pd
df = pd.DataFrame(table)
%timeit df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
所以,看起来使用argsort进行索引是目前为止最快的方法…
其他回答
import numpy as np
a=np.array([[21,20,19,18,17],[16,15,14,13,12],[11,10,9,8,7],[6,5,4,3,2]])
y=np.argsort(a[:,2],kind='mergesort')# a[:,2]=[19,14,9,4]
a=a[y]
print(a)
期望的输出是[[6、5、4、3、2],[11、10、9、8、7]、[12]16日,15日,14日,13日,[17]19日21日20日,18日)
请注意,argsort(numArray)返回numArray的索引,因为它应该以排序的方式排列。
例子
x=np.array([8,1,5])
z=np.argsort(x) #[1,3,0] are the **indices of the predicted sorted array**
print(x[z]) #boolean indexing which sorts the array on basis of indices saved in z
答案是[1,5,8]
熊猫的方法只是为了完整性:
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
a = pd.DataFrame(a)
a.sort_values(1, ascending=True).to_numpy()
array([[7, 0, 5], # '1' means sort by second column
[9, 2, 3],
[4, 5, 6]])
prl900 基准测试,与公认的答案相比:
%timeit pandas_df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
%timeit numpy_table[numpy_table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
我也遇到过类似的问题。
我的问题:
我想计算SVD,并需要对特征值进行降序排序。但是我想保持特征值和特征向量之间的映射。 我的特征值在第一行对应的特征向量在它下面的同列。
我想对一个二维数组按第一行降序按列排序。
我的解决方案
a = a[::, a[0,].argsort()[::-1]]
那么这是如何工作的呢?
a[0,]是我要排序的第一行。
现在我使用argsort来获取下标的顺序。
我使用[::-1]是因为我需要降序。
最后我使用了一个[::,…]以获得按正确顺序排列的视图。
按a的第二列排序:
a[a[:, 1].argsort()]
这是一个老问题,但如果你需要将其推广到高于2维的数组,下面是可以很容易推广的解决方案:
np.einsum('ij->ij', a[a[:,1].argsort(),:])
对于二维来说,这是一个过度的处理,对于@steve的答案,一个[a[:,1].argsort()]就足够了,但是这个答案不能推广到更高的维度。你可以在这个问题中找到一个3D数组的例子。
输出:
[[7 0 5]
[9 2 3]
[4 5 6]]