我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
只需按所需顺序分配列名:
In [39]: df
Out[39]:
0 1 2 3 4 mean
0 0.172742 0.915661 0.043387 0.712833 0.190717 1
1 0.128186 0.424771 0.590779 0.771080 0.617472 1
2 0.125709 0.085894 0.989798 0.829491 0.155563 1
3 0.742578 0.104061 0.299708 0.616751 0.951802 1
4 0.721118 0.528156 0.421360 0.105886 0.322311 1
5 0.900878 0.082047 0.224656 0.195162 0.736652 1
6 0.897832 0.558108 0.318016 0.586563 0.507564 1
7 0.027178 0.375183 0.930248 0.921786 0.337060 1
8 0.763028 0.182905 0.931756 0.110675 0.423398 1
9 0.848996 0.310562 0.140873 0.304561 0.417808 1
In [40]: df = df[['mean', 4,3,2,1]]
现在,“mean”列出现在前面:
In [41]: df
Out[41]:
mean 4 3 2 1
0 1 0.190717 0.712833 0.043387 0.915661
1 1 0.617472 0.771080 0.590779 0.424771
2 1 0.155563 0.829491 0.989798 0.085894
3 1 0.951802 0.616751 0.299708 0.104061
4 1 0.322311 0.105886 0.421360 0.528156
5 1 0.736652 0.195162 0.224656 0.082047
6 1 0.507564 0.586563 0.318016 0.558108
7 1 0.337060 0.921786 0.930248 0.375183
8 1 0.423398 0.110675 0.931756 0.182905
9 1 0.417808 0.304561 0.140873 0.310562
其他回答
这里有一种移动一个现有列的方法,它将修改现有的数据帧。
my_column = df.pop('column name')
df.insert(3, my_column.name, my_column) # Is in-place
一种简单的方法是用列列表重新分配数据帧,根据需要重新排列。
这就是你现在拥有的:
In [6]: df
Out[6]:
0 1 2 3 4 mean
0 0.445598 0.173835 0.343415 0.682252 0.582616 0.445543
1 0.881592 0.696942 0.702232 0.696724 0.373551 0.670208
2 0.662527 0.955193 0.131016 0.609548 0.804694 0.632596
3 0.260919 0.783467 0.593433 0.033426 0.512019 0.436653
4 0.131842 0.799367 0.182828 0.683330 0.019485 0.363371
5 0.498784 0.873495 0.383811 0.699289 0.480447 0.587165
6 0.388771 0.395757 0.745237 0.628406 0.784473 0.588529
7 0.147986 0.459451 0.310961 0.706435 0.100914 0.345149
8 0.394947 0.863494 0.585030 0.565944 0.356561 0.553195
9 0.689260 0.865243 0.136481 0.386582 0.730399 0.561593
In [7]: cols = df.columns.tolist()
In [8]: cols
Out[8]: [0L, 1L, 2L, 3L, 4L, 'mean']
按任意方式重新排列列。这是我将最后一个元素移动到第一个位置的方式:
In [12]: cols = cols[-1:] + cols[:-1]
In [13]: cols
Out[13]: ['mean', 0L, 1L, 2L, 3L, 4L]
然后重新排序数据帧,如下所示:
In [16]: df = df[cols] # OR df = df.ix[:, cols]
In [17]: df
Out[17]:
mean 0 1 2 3 4
0 0.445543 0.445598 0.173835 0.343415 0.682252 0.582616
1 0.670208 0.881592 0.696942 0.702232 0.696724 0.373551
2 0.632596 0.662527 0.955193 0.131016 0.609548 0.804694
3 0.436653 0.260919 0.783467 0.593433 0.033426 0.512019
4 0.363371 0.131842 0.799367 0.182828 0.683330 0.019485
5 0.587165 0.498784 0.873495 0.383811 0.699289 0.480447
6 0.588529 0.388771 0.395757 0.745237 0.628406 0.784473
7 0.345149 0.147986 0.459451 0.310961 0.706435 0.100914
8 0.553195 0.394947 0.863494 0.585030 0.565944 0.356561
9 0.561593 0.689260 0.865243 0.136481 0.386582 0.730399
我认为这个函数更简单。您只需在开始或结束处或同时指定列的子集:
def reorder_df_columns(df, start=None, end=None):
"""
This function reorder columns of a DataFrame.
It takes columns given in the list `start` and move them to the left.
Its also takes columns in `end` and move them to the right.
"""
if start is None:
start = []
if end is None:
end = []
assert isinstance(start, list) and isinstance(end, list)
cols = list(df.columns)
for c in start:
if c not in cols:
start.remove(c)
for c in end:
if c not in cols or c in start:
end.remove(c)
for c in start + end:
cols.remove(c)
cols = start + cols + end
return df[cols]
书中最黑客的方法
df.insert(0, "test", df["mean"])
df = df.drop(columns=["mean"]).rename(columns={"test": "mean"})
大多数答案都不够概括,panda reindex_axis方法有点乏味,因此我提供了一个简单的函数,可以使用字典将任意数量的列移动到任意位置,其中key=列名,value=要移动到的位置。如果数据帧很大,请将True传递给“big_data”,那么函数将返回有序的列列表。您可以使用此列表来分割数据。
def order_column(df, columns, big_data = False):
"""Re-Orders dataFrame column(s)
Parameters :
df -- dataframe
columns -- a dictionary:
key = current column position/index or column name
value = position to move it to
big_data -- boolean
True = returns only the ordered columns as a list
the user user can then slice the data using this
ordered column
False = default - return a copy of the dataframe
"""
ordered_col = df.columns.tolist()
for key, value in columns.items():
ordered_col.remove(key)
ordered_col.insert(value, key)
if big_data:
return ordered_col
return df[ordered_col]
# e.g.
df = pd.DataFrame({'chicken wings': np.random.rand(10, 1).flatten(), 'taco': np.random.rand(10,1).flatten(),
'coffee': np.random.rand(10, 1).flatten()})
df['mean'] = df.mean(1)
df = order_column(df, {'mean': 0, 'coffee':1 })
>>>
col = order_column(df, {'mean': 0, 'coffee':1 }, True)
col
>>>
['mean', 'coffee', 'chicken wings', 'taco']
# you could grab it by doing this
df = df[col]