我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
我有以下DataFrame(df):
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.rand(10, 5))
我通过分配添加更多列:
df['mean'] = df.mean(1)
如何将列的意思移到前面,即将其设置为第一列,而其他列的顺序保持不变?
当前回答
此函数避免了您只需列出数据集中的每个变量来对其中的几个变量进行排序。
def order(frame,var):
if type(var) is str:
var = [var] #let the command take a string or list
varlist =[w for w in frame.columns if w not in var]
frame = frame[var+varlist]
return frame
它需要两个参数,第一个是数据集,第二个是要放到前面的数据集中的列。
所以在我的例子中,我有一个名为Frame的数据集,其中包含变量A1、A2、B1、B2、Total和Date。如果我想把道达尔带到前面,那么我所要做的就是:
frame = order(frame,['Total'])
如果我想将Total和Date带到前台,那么我会:
frame = order(frame,['Total','Date'])
编辑:
另一种有用的使用方法是,如果您有一个不熟悉的表,并且正在查找其中包含特定术语的变量,例如VAR1、VAR2,。。。您可以执行以下操作:
frame = order(frame,[v for v in frame.columns if "VAR" in v])
其他回答
这里有一种移动一个现有列的方法,它将修改现有的数据帧。
my_column = df.pop('column name')
df.insert(3, my_column.name, my_column) # Is in-place
您需要按所需的顺序创建一个新的列列表,然后使用df=df[cols]以新的顺序重新排列列。
cols = ['mean'] + [col for col in df if col != 'mean']
df = df[cols]
您也可以使用更通用的方法。在本例中,最后一列(由-1表示)作为第一列插入。
cols = [df.columns[-1]] + [col for col in df if col != df.columns[-1]]
df = df[cols]
如果DataFrame中存在列,也可以使用此方法按所需顺序重新排序列。
inserted_cols = ['a', 'b', 'c']
cols = ([col for col in inserted_cols if col in df]
+ [col for col in df if col not in inserted_cols])
df = df[cols]
大多数答案都不够概括,panda reindex_axis方法有点乏味,因此我提供了一个简单的函数,可以使用字典将任意数量的列移动到任意位置,其中key=列名,value=要移动到的位置。如果数据帧很大,请将True传递给“big_data”,那么函数将返回有序的列列表。您可以使用此列表来分割数据。
def order_column(df, columns, big_data = False):
"""Re-Orders dataFrame column(s)
Parameters :
df -- dataframe
columns -- a dictionary:
key = current column position/index or column name
value = position to move it to
big_data -- boolean
True = returns only the ordered columns as a list
the user user can then slice the data using this
ordered column
False = default - return a copy of the dataframe
"""
ordered_col = df.columns.tolist()
for key, value in columns.items():
ordered_col.remove(key)
ordered_col.insert(value, key)
if big_data:
return ordered_col
return df[ordered_col]
# e.g.
df = pd.DataFrame({'chicken wings': np.random.rand(10, 1).flatten(), 'taco': np.random.rand(10,1).flatten(),
'coffee': np.random.rand(10, 1).flatten()})
df['mean'] = df.mean(1)
df = order_column(df, {'mean': 0, 'coffee':1 })
>>>
col = order_column(df, {'mean': 0, 'coffee':1 }, True)
col
>>>
['mean', 'coffee', 'chicken wings', 'taco']
# you could grab it by doing this
df = df[col]
要根据其他列的名称将现有列设置为右侧/左侧,请执行以下操作:
def df_move_column(df, col_to_move, col_left_of_destiny="", right_of_col_bool=True):
cols = list(df.columns.values)
index_max = len(cols) - 1
if not right_of_col_bool:
# set left of a column "c", is like putting right of column previous to "c"
# ... except if left of 1st column, then recursive call to set rest right to it
aux = cols.index(col_left_of_destiny)
if not aux:
for g in [x for x in cols[::-1] if x != col_to_move]:
df = df_move_column(
df,
col_to_move=g,
col_left_of_destiny=col_to_move
)
return df
col_left_of_destiny = cols[aux - 1]
index_old = cols.index(col_to_move)
index_new = 0
if len(col_left_of_destiny):
index_new = cols.index(col_left_of_destiny) + 1
if index_old == index_new:
return df
if index_new < index_old:
index_new = np.min([index_new, index_max])
cols = (
cols[:index_new]
+ [cols[index_old]]
+ cols[index_new:index_old]
+ cols[index_old + 1 :]
)
else:
cols = (
cols[:index_old]
+ cols[index_old + 1 : index_new]
+ [cols[index_old]]
+ cols[index_new:]
)
df = df[cols]
return df
E.g.
cols = list("ABCD")
df2 = pd.DataFrame(np.arange(4)[np.newaxis, :], columns=cols)
for k in cols:
print(30 * "-")
for g in [x for x in cols if x != k]:
df_new = df_move_column(df2, k, g)
print(f"{k} after {g}: {df_new.columns.values}")
for k in cols:
print(30 * "-")
for g in [x for x in cols if x != k]:
df_new = df_move_column(df2, k, g, right_of_col_bool=False)
print(f"{k} before {g}: {df_new.columns.values}")
输出:
如果列名太长,无法键入,则可以通过整数列表指定新顺序,其中包含以下位置:
数据:
0 1 2 3 4 mean
0 0.397312 0.361846 0.719802 0.575223 0.449205 0.500678
1 0.287256 0.522337 0.992154 0.584221 0.042739 0.485741
2 0.884812 0.464172 0.149296 0.167698 0.793634 0.491923
3 0.656891 0.500179 0.046006 0.862769 0.651065 0.543382
4 0.673702 0.223489 0.438760 0.468954 0.308509 0.422683
5 0.764020 0.093050 0.100932 0.572475 0.416471 0.389390
6 0.259181 0.248186 0.626101 0.556980 0.559413 0.449972
7 0.400591 0.075461 0.096072 0.308755 0.157078 0.207592
8 0.639745 0.368987 0.340573 0.997547 0.011892 0.471749
9 0.050582 0.714160 0.168839 0.899230 0.359690 0.438500
通用示例:
new_order = [3,2,1,4,5,0]
print(df[df.columns[new_order]])
3 2 1 4 mean 0
0 0.575223 0.719802 0.361846 0.449205 0.500678 0.397312
1 0.584221 0.992154 0.522337 0.042739 0.485741 0.287256
2 0.167698 0.149296 0.464172 0.793634 0.491923 0.884812
3 0.862769 0.046006 0.500179 0.651065 0.543382 0.656891
4 0.468954 0.438760 0.223489 0.308509 0.422683 0.673702
5 0.572475 0.100932 0.093050 0.416471 0.389390 0.764020
6 0.556980 0.626101 0.248186 0.559413 0.449972 0.259181
7 0.308755 0.096072 0.075461 0.157078 0.207592 0.400591
8 0.997547 0.340573 0.368987 0.011892 0.471749 0.639745
9 0.899230 0.168839 0.714160 0.359690 0.438500 0.050582
虽然看起来我只是以不同的顺序显式键入列名,但列“mean”的事实应该清楚地表明,new_order与实际位置相关,而不是列名。
对于OP问题的具体情况:
new_order = [-1,0,1,2,3,4]
df = df[df.columns[new_order]]
print(df)
mean 0 1 2 3 4
0 0.500678 0.397312 0.361846 0.719802 0.575223 0.449205
1 0.485741 0.287256 0.522337 0.992154 0.584221 0.042739
2 0.491923 0.884812 0.464172 0.149296 0.167698 0.793634
3 0.543382 0.656891 0.500179 0.046006 0.862769 0.651065
4 0.422683 0.673702 0.223489 0.438760 0.468954 0.308509
5 0.389390 0.764020 0.093050 0.100932 0.572475 0.416471
6 0.449972 0.259181 0.248186 0.626101 0.556980 0.559413
7 0.207592 0.400591 0.075461 0.096072 0.308755 0.157078
8 0.471749 0.639745 0.368987 0.340573 0.997547 0.011892
9 0.438500 0.050582 0.714160 0.168839 0.899230 0.359690
这种方法的主要问题是多次调用同一代码将每次产生不同的结果,因此需要小心:)