这个C/ c++代码在Python中的等效代码是什么?

void foo()
{
    static int counter = 0;
    counter++;
    printf("counter is %d\n", counter);
}

具体来说,如何在函数级别实现静态成员,而不是在类级别?将函数放入类中会改变什么吗?


当前回答

这个回答建立在@claudiu的回答之上。

我发现我的代码变得越来越不清晰,而我一直都很清楚 当我要访问静态变量时,可以在函数名前面加上。

也就是说,在我的函数代码中,我更喜欢这样写:

print(statics.foo)

而不是

print(my_function_name.foo)

所以,我的解决方案是:

向函数中添加静态属性 在函数作用域中,添加一个局部变量statics作为my_function.statics的别名

from bunch import *

def static_vars(**kwargs):
    def decorate(func):
        statics = Bunch(**kwargs)
        setattr(func, "statics", statics)
        return func
    return decorate

@static_vars(name = "Martin")
def my_function():
    statics = my_function.statics
    print("Hello, {0}".format(statics.name))

备注

我的方法使用一个名为Bunch的类,它是一个字典,支持 属性风格的访问,一种JavaScript(参见2000年左右关于它的原始文章)

它可以通过pip install bunch安装

也可以这样手写:

class Bunch(dict):
    def __init__(self, **kw):
        dict.__init__(self,kw)
        self.__dict__ = self

其他回答

我个人更喜欢下面的装饰。各有各的。

def staticize(name, factory):
    """Makes a pseudo-static variable in calling function.

    If name `name` exists in calling function, return it. 
    Otherwise, saves return value of `factory()` in 
    name `name` of calling function and return it.

    :param name: name to use to store static object 
    in calling function
    :type name: String
    :param factory: used to initialize name `name` 
    in calling function
    :type factory: function
    :rtype: `type(factory())`

    >>> def steveholt(z):
    ...     a = staticize('a', list)
    ...     a.append(z)
    >>> steveholt.a
    Traceback (most recent call last):
    ...
    AttributeError: 'function' object has no attribute 'a'
    >>> steveholt(1)
    >>> steveholt.a
    [1]
    >>> steveholt('a')
    >>> steveholt.a
    [1, 'a']
    >>> steveholt.a = []
    >>> steveholt.a
    []
    >>> steveholt('zzz')
    >>> steveholt.a
    ['zzz']

    """
    from inspect import stack
    # get scope enclosing calling function
    calling_fn_scope = stack()[2][0]
    # get calling function
    calling_fn_name = stack()[1][3]
    calling_fn = calling_fn_scope.f_locals[calling_fn_name]
    if not hasattr(calling_fn, name):
        setattr(calling_fn, name, factory())
    return getattr(calling_fn, name)

根据丹尼尔的回答(补充):

class Foo(object): 
    counter = 0  

def __call__(self, inc_value=0):
    Foo.counter += inc_value
    return Foo.counter

foo = Foo()

def use_foo(x,y):
    if(x==5):
        foo(2)
    elif(y==7):
        foo(3)
    if(foo() == 10):
        print("yello")


use_foo(5,1)
use_foo(5,1)
use_foo(1,7)
use_foo(1,7)
use_foo(1,1)

我想添加这一部分的原因是,静态变量不仅用于增加某个值,而且还用于检查静态变量是否等于某个值,作为一个现实生活中的例子。

静态变量仍然受到保护,并且仅在函数use_foo()的作用域内使用。

在这个例子中,调用foo()函数完全是(相对于相应的c++等效函数):

stat_c +=9; // in c++
foo(9)  #python equiv

if(stat_c==10){ //do something}  // c++

if(foo() == 10):      # python equiv
  #add code here      # python equiv       

Output :
yello
yello

如果类Foo被严格定义为一个单例类,那将是理想的。这将使它更加python化。

鉴于这个问题,我可以提出另一个可能更好用的替代方案,对方法和函数看起来都是一样的:

@static_var2('seed',0)
def funccounter(statics, add=1):
    statics.seed += add
    return statics.seed

print funccounter()       #1
print funccounter(add=2)  #3
print funccounter()       #4

class ACircle(object):
    @static_var2('seed',0)
    def counter(statics, self, add=1):
        statics.seed += add
        return statics.seed

c = ACircle()
print c.counter()      #1
print c.counter(add=2) #3
print c.counter()      #4
d = ACircle()
print d.counter()      #5
print d.counter(add=2) #7
print d.counter()      #8    

如果你喜欢这种用法,下面是它的实现:

class StaticMan(object):
    def __init__(self):
        self.__dict__['_d'] = {}

    def __getattr__(self, name):
        return self.__dict__['_d'][name]
    def __getitem__(self, name):
        return self.__dict__['_d'][name]
    def __setattr__(self, name, val):
        self.__dict__['_d'][name] = val
    def __setitem__(self, name, val):
        self.__dict__['_d'][name] = val

def static_var2(name, val):
    def decorator(original):
        if not hasattr(original, ':staticman'):    
            def wrapped(*args, **kwargs):
                return original(getattr(wrapped, ':staticman'), *args, **kwargs)
            setattr(wrapped, ':staticman', StaticMan())
            f = wrapped
        else:
            f = original #already wrapped

        getattr(f, ':staticman')[name] = val
        return f
    return decorator

当然,这是一个老问题,但我想我可以提供一些更新。

看来性能论点已经过时了。 对于siInt_try和isInt_re2,相同的测试套件似乎给出了类似的结果。 当然,结果会有所不同,但这是在我的计算机上使用python 3.4.4的一次会话,使用Xeon W3550的内核4.3.01。 我已经运行了几次,结果似乎相似。 我将全局正则表达式移动到函数静态,但性能差异可以忽略不计。

isInt_try: 0.3690
isInt_str: 0.3981
isInt_re: 0.5870
isInt_re2: 0.3632

考虑到性能问题,try/catch似乎可以生成最适合未来和墙角情况的代码,所以可能只是将其包装在函数中

Python方法中的静态变量

class Count:
    def foo(self):
        try: 
            self.foo.__func__.counter += 1
        except AttributeError: 
            self.foo.__func__.counter = 1

        print self.foo.__func__.counter

m = Count()
m.foo()       # 1
m.foo()       # 2
m.foo()       # 3