Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

令人惊讶的是,人们给出的答案只能转换成小基数(比英语字母表的长度还小)。没有人试图给出一个可以转换为2到无穷任意底数的解。

这里有一个超级简单的解决方案:

def numberToBase(n, b):
    if n == 0:
        return [0]
    digits = []
    while n:
        digits.append(int(n % b))
        n //= b
    return digits[::-1]

所以如果你需要把一个超级大的数转换成577的底数,

numberToBase(67854 ** 15 - 102,577),将为您提供正确的解决方案: [4, 473, 131, 96, 431, 285, 524, 486, 28, 23, 16, 82, 292, 538, 149, 25, 41, 483, 100, 517, 131, 28, 0, 435, 197, 264, 455],

你以后可以把它转换成任何你想要的基数

at some point of time you will notice that sometimes there is no built-in library function to do things that you want, so you need to write your own. If you disagree, post you own solution with a built-in function which can convert a base 10 number to base 577. this is due to lack of understanding what a number in some base means. I encourage you to think for a little bit why base in your method works only for n <= 36. Once you are done, it will be obvious why my function returns a list and has the signature it has.

其他回答

我知道这是一个老帖子,但我只是把我的解决方案留在这里以防万一。

def decimal_to_given_base(integer_to_convert, base):
     remainder = integer_to_convert // base
     digit = integer_to_convert % base
     if integer_to_convert == 0:
         return '0'
     elif remainder == 0:
         return str(digit)
     else:
         return decimal_to_given_base(remainder, base) + str(digit)

如果你需要兼容Python的古老版本,你可以使用gmpy(它包含一个快速的,完全通用的int-to-string转换函数,可以为这样的古老版本构建-你可能需要尝试更老的版本,因为最近的版本还没有针对古老的Python和GMP版本进行测试,只有一些最近的版本),或者,为了速度较慢但更方便,使用Python代码-例如,对于Python 2,最简单的方法是:

import string
digs = string.digits + string.ascii_letters


def int2base(x, base):
    if x < 0:
        sign = -1
    elif x == 0:
        return digs[0]
    else:
        sign = 1

    x *= sign
    digits = []

    while x:
        digits.append(digs[int(x % base)])
        x = int(x / base)

    if sign < 0:
        digits.append('-')

    digits.reverse()

    return ''.join(digits)

对于Python 3, int(x / base)会导致不正确的结果,必须将其更改为x // base:

import string
digs = string.digits + string.ascii_letters


def int2base(x, base):
    if x < 0:
        sign = -1
    elif x == 0:
        return digs[0]
    else:
        sign = 1

    x *= sign
    digits = []

    while x:
        digits.append(digs[x % base])
        x = x // base

    if sign < 0:
        digits.append('-')

    digits.reverse()

    return ''.join(digits)
def int2base(a, base, numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
    baseit = lambda a=a, b=base: (not a) and numerals[0]  or baseit(a-a%b,b*base)+numerals[a%b%(base-1) or (a%b) and (base-1)]
    return baseit()

解释

在任何底数下,每个数字都等于a1+a2*base**2+a3*base**3…“任务”是找出所有的a。

everyN = 1、2、3……代码通过b对b=base**(N+1)进行“模组”来隔离aN*base**N, b=base**(N+1)切片所有大于N的a,并通过每次由当前aN*base**N调用func时减少a来切片它们的序列小于N的所有a。

底%(底-1)==1,则底**p%(底-1)==1,而底q*底^p%(底-1)==q,只有当q=底-1时例外,返回0。 为了解决这个问题,如果它返回0,func会检查它从原点开始是否是0。


优势

在这个例子中,只有一个乘法(而不是除法)和一些模量运算,这些运算相对花费的时间较少。

num = input("number")
power = 0
num = int(num)
while num > 10:
    num = num / 10
    power += 1

print(str(round(num, 2)) + "^" + str(power))

很棒的答案! 我想我问题的答案是“不”,我并没有错过一些明显的解决方案。 下面是我将使用的函数,它可以浓缩答案中所表达的好想法。

允许调用者提供的字符映射(允许base64编码) 检查负数和零 将复数映射为字符串元组

def int2base(x,b,alphabet='0123456789abcdefghijklmnopqrstuvwxyz'): 'convert an integer to its string representation in a given base' if b<2 or b>len(alphabet): if b==64: # assume base64 rather than raise error alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" else: raise AssertionError("int2base base out of range") if isinstance(x,complex): # return a tuple return ( int2base(x.real,b,alphabet) , int2base(x.imag,b,alphabet) ) if x<=0: if x==0: return alphabet[0] else: return '-' + int2base(-x,b,alphabet) # else x is non-negative real rets='' while x>0: x,idx = divmod(x,b) rets = alphabet[idx] + rets return rets