我用c++写了一个程序来寻找ab = C的所有解,其中a, b和C一起使用所有的数字0-9,只使用一次。程序循环遍历a和b的值,并每次对a、b和ab运行数字计数例程,以检查是否满足数字条件。

但是,当ab超出整数限制时,会产生伪解。我最终使用如下代码来检查这个:

unsigned long b, c, c_test;
...
c_test=c*b;         // Possible overflow
if (c_test/b != c) {/* There has been an overflow*/}
else c=c_test;      // No overflow

是否有更好的方法来测试溢出?我知道有些芯片有一个内部标志,在溢出发生时设置,但我从未见过通过C或c++访问它。


注意,有符号int溢出在C和c++中是未定义的行为,因此您必须在不实际引起它的情况下检测它。对于加法前的有符号整型溢出,请参见在C/ c++中检测有符号溢出。


当前回答

另一个有趣的工具是IOC: C/ c++的整数溢出检查器。

这是一个修补过的Clang编译器,它在编译时向代码添加检查。

输出如下所示:

CLANG ARITHMETIC UNDEFINED at <add.c, (9:11)> :
Op: +, Reason : Signed Addition Overflow,
BINARY OPERATION: left (int32): 2147483647 right (int32): 1

其他回答

为了扩展Head Geek的答案,有一种更快的方法来执行addition_is_safe;

bool addition_is_safe(unsigned int a, unsigned int b)
{
    unsigned int L_Mask = std::numeric_limits<unsigned int>::max();
    L_Mask >>= 1;
    L_Mask = ~L_Mask;

    a &= L_Mask;
    b &= L_Mask;

    return ( a == 0 || b == 0 );
}

这使用了机器架构安全,64位和32位无符号整数仍然可以正常工作。基本上,我创建了一个掩码,它将屏蔽除最重要的位外的所有内容。然后,对两个整数进行掩码,如果其中任何一个没有设置该位,则加法是安全的。

如果在某个构造函数中预初始化掩码,这将更快,因为它永远不会改变。

要以一种可移植的方式执行无符号乘法而不溢出,可以使用以下方法:

... /* begin multiplication */
unsigned multiplicand, multiplier, product, productHalf;
int zeroesMultiplicand, zeroesMultiplier;
zeroesMultiplicand = number_of_leading_zeroes( multiplicand );
zeroesMultiplier   = number_of_leading_zeroes( multiplier );
if( zeroesMultiplicand + zeroesMultiplier <= 30 ) goto overflow;
productHalf = multiplicand * ( c >> 1 );
if( (int)productHalf < 0 ) goto overflow;
product = productHalf * 2;
if( multiplier & 1 ){
   product += multiplicand;
   if( product < multiplicand ) goto overflow;
}
..../* continue code here where "product" is the correct product */
....
overflow: /* put overflow handling code here */

int number_of_leading_zeroes( unsigned value ){
   int ctZeroes;
   if( value == 0 ) return 32;
   ctZeroes = 1;
   if( ( value >> 16 ) == 0 ){ ctZeroes += 16; value = value << 16; }
   if( ( value >> 24 ) == 0 ){ ctZeroes +=  8; value = value <<  8; }
   if( ( value >> 28 ) == 0 ){ ctZeroes +=  4; value = value <<  4; }
   if( ( value >> 30 ) == 0 ){ ctZeroes +=  2; value = value <<  2; }
   ctZeroes -= x >> 31;
   return ctZeroes;
}

Clang现在支持有符号整数和无符号整数的动态溢出检查。参见-fsanitize=integer开关。目前,它是唯一完全支持用于调试目的的动态溢出检查的c++编译器。

在C中捕获整数溢出指出了一种比CERT讨论的更通用的解决方案(就处理的类型而言,它更通用),即使它需要一些GCC扩展(我不知道它们有多广泛的支持)。

我看到你用的是无符号整数。根据定义,在C中(我不了解c++),无符号算术不会溢出…所以,至少对C来说,你的观点是没有意义的:)

对于有符号整数,一旦出现溢出,就会发生未定义行为(UB),程序可以做任何事情(例如:使测试不确定)。

#include <limits.h>

int a = <something>;
int x = <something>;
a += x;              /* UB */
if (a < 0) {         /* Unreliable test */
  /* ... */
}

要创建一个符合要求的程序,您需要在生成溢出之前测试溢出。该方法也可以用于无符号整数:

// For addition
#include <limits.h>

int a = <something>;
int x = <something>;
if (x > 0 && a > INT_MAX - x) // `a + x` would overflow
if (x < 0 && a < INT_MIN - x) // `a + x` would underflow

// For subtraction
#include <limits.h>
int a = <something>;
int x = <something>;
if (x < 0 && a > INT_MAX + x) // `a - x` would overflow
if (x > 0 && a < INT_MIN + x) // `a - x` would underflow

// For multiplication
#include <limits.h>

int a = <something>;
int x = <something>;
// There may be a need to check for -1 for two's complement machines.
// If one number is -1 and another is INT_MIN, multiplying them we get abs(INT_MIN) which is 1 higher than INT_MAX
if (a == -1 && x == INT_MIN) // `a * x` can overflow
if (x == -1 && a == INT_MIN) // `a * x` (or `a / x`) can overflow
// general case
if (x != 0 && a > INT_MAX / x) // `a * x` would overflow
if (x != 0 && a < INT_MIN / x) // `a * x` would underflow

对于除法(INT_MIN和-1特殊情况除外),不可能超过INT_MIN或INT_MAX。