并发和并行之间的区别是什么?


当前回答

将其视为服务队列,其中服务器只能服务队列中的第一个作业。

1个服务器,1个作业队列(有5个作业)->无并发,无并行性(只有一个作业被服务完成,队列中的下一个作业必须等待服务完成,并且没有其他服务器为其服务)

1个服务器,2个或多个不同的队列(每个队列有5个作业)->并发(因为服务器与队列中的所有第一个作业共享时间,相等或加权),仍然没有并行性,因为在任何时刻都有一个且唯一的作业在服务。

两个或多个服务器,一个队列->并行(两个作业同时完成),但没有并发(服务器不共享时间,第三个作业必须等待其中一个服务器完成)

2个或多个服务器,2个或更多不同的队列->并发性和并行性

换句话说,并发是共享完成作业的时间,它可能会占用相同的时间来完成作业,但至少它会提前开始。重要的是,可以将作业分割成更小的作业,这样可以进行交织。

并行性是通过更多并行运行的CPU、服务器、人员等实现的。

请记住,如果共享资源,则无法实现纯粹的并行性,但这正是并发性的最佳实际用途,它将承担另一项不需要该资源的工作。

其他回答

同意:具有共享资源潜力的多个执行流

前任:两个线程竞争I/O端口。

视差:将问题分成多个相似的块。

前任:通过对文件的每一半运行两个进程来解析大文件。

并发简单意味着多个任务正在运行(不需要并行)。例如,假设我们在任何时刻都有3个任务:多个任务可能正在运行,或者所有任务可能同时运行。

并行性意味着它们实际上是并行运行的。因此,在这种情况下,三者必须同时运行。

想象一下,通过观看视频教程学习一种新的编程语言。你需要暂停视频,应用代码中所说的内容,然后继续观看。这就是并发性。

现在你是一名职业程序员了。你喜欢在编码时听平静的音乐。这就是平行主义。

正如Andrew Gerrand在GoLang博客中所说

并发是指同时处理许多事情。相似一次做很多事情。

享受

“并发”是指同时做任何事情。它们可能是不同的东西,也可能是相同的东西。尽管缺乏公认的答案,但这并不是关于“看起来是在同一时间”,而是真的在同一个时间。您需要多个CPU内核,或者在一个主机内使用共享内存,或者在不同主机上使用分布式内存,以运行并发代码。例如,同时并发运行的3个不同任务的流水线:Task-level-2必须等待Task-level-1完成的单元,而Task-level-3必须等待Task-level-2完成的工作单元。另一个例子是1-生产者与1-消费者的并发;或许多生产者和1-消费者;读者和作家;等

“并行”是指同时做相同的事情。它是并发的,但更重要的是,它是在同一时间发生的相同行为,最典型的是在不同的数据上。矩阵代数通常可以并行化,因为您有重复运行的相同操作:例如,可以使用相同的行为(和)在不同的列上同时计算矩阵的列和。在可用的处理器核之间划分(拆分)列是一种常见的策略,这样每个处理器核处理的工作量(列数)就接近相同。另一种拆分工作的方法是一袋一袋的任务,完成工作的员工会回到经理那里,经理会将工作分配出去,并动态地分配更多的工作,直到所有工作都完成。票务算法是另一种。

不仅仅是数字代码可以并行化。文件太频繁可以并行处理。在自然语言处理应用程序中,对于数百万个文档文件中的每一个,您可能需要计算文档中标记的数量。这是并行的,因为您正在计算每个文件的令牌,这是相同的行为。

换句话说,并行是指同时执行相同的行为。并发意味着同时,但不一定是相同的行为。并行是一种特殊类型的并发,在同一时间发生相同的事情。

例如,术语将包括原子指令、关键部分、互斥、旋转等待、信号量、监视器、屏障、消息传递、map reduce、心跳、铃声、票务算法、线程、MPI、OpenMP。

格雷戈里·安德鲁斯(Gregory Andrews)的著作是关于多线程、并行和分布式编程的顶级教科书。

这个来源的解释对我很有帮助:

并发性与应用程序如何处理多个任务有关一个应用程序可以一次处理一个任务(按顺序)或同时处理多个任务(同时)。另一方面,并行性与应用程序处理每个单独的任务。应用程序可以处理该任务从开始到结束依次执行,或将任务拆分为子任务可以并行完成。正如您所看到的,应用程序可以是并发的,但不能是并行的。这意味着它同时处理多个任务,但是这些任务不分解为子任务。应用程序也可以是并行的,但不能是并发的。这意味着应用程序一次只能处理一个任务,而此任务被分解为可以并行处理的子任务。此外,应用程序既不能是并发的,也不能是并行的。这意味着它一次只能处理一个任务从未分解为并行执行的子任务。最后,应用程序也可以是并发和并行的,在它可以同时处理多个任务,也可以中断将每个任务分解为子任务以并行执行。然而并发性和并行性的好处可能会因此而丧失由于计算机中的CPU已经处于相当繁忙的状态仅具有并发性或并行性。结合起来可能会导致只有很小的性能增益或甚至性能损失。