并发和并行之间的区别是什么?
当前回答
我将提供一个与这里的一些流行答案有点冲突的答案。在我看来,并发是一个包含并行性的通用术语。并发适用于不同任务或工作单元在时间上重叠的任何情况。并行性更具体地适用于在同一物理时间评估/执行不同工作单元的情况。并行性存在的原因是加速了可以从多个物理计算资源中受益的软件。适用于并发的另一个主要概念是交互性。当从外部世界可以观察到任务的重叠时,互动性适用。交互性存在的原因是使软件能够响应真实世界的实体,如用户、网络对等体、硬件外围设备等。
并行性和交互性几乎完全独立于并发性。对于一个特定的项目,开发人员可能会关心其中之一,或者两者都不关心。它们往往会被混淆,尤其是因为线程这一令人厌恶的东西给了一个相当方便的原语来实现两者。
关于并行性的更多细节:
并行性存在于非常小的规模(例如处理器中的指令级并行性)、中等规模(例如多核处理器)和大型规模(例如高性能计算集群)。近年来,由于多核处理器的发展,软件开发人员暴露更多线程级并行性的压力越来越大。平行性与依赖性密切相关。依赖性限制了并行性的实现程度;如果一个任务依赖于另一个任务,则两个任务不能并行执行(忽略推测)。
程序员可以使用许多模式和框架来表达并行性:管道、任务池、数据结构上的聚合操作(“并行数组”)。
关于互动性的更多细节:
最基本和最常见的交互方式是使用事件(即事件循环和处理程序/回调)。对于简单的任务,事件是很好的。尝试使用事件执行更复杂的任务会导致堆栈撕裂(也称为回调地狱;也称为控制反转)。当你厌倦了事件时,你可以尝试更奇特的东西,比如生成器、协程(又称Async/Await)或合作线程。
出于对可靠软件的热爱,如果你想要的是交互性,请不要使用线程。
曲线几何非线性
我不喜欢Rob Pike的“并发不是并行;它更好”口号。并发既不比并行好,也不比并行差。并发性包括交互性,不能以更好/更差的方式与并行性进行比较。这就像说“控制流比数据更好”。
其他回答
我认为在这个问题上有两种不同的观点导致了混淆:程序员的观点(并发/并行编程)与计算机/操作系统的观点(并行/并行执行)。
这里回答了计算机的观点。
程序员的观点:
并发编程:程序员编写代码时知道代码将由多个线程执行,无论出于何种原因。原因可能是:在等待I/O时更好地利用CPU,通过不同线程处理Web请求,通过在独立于主线程的线程中运行计算,运行周期性后台任务,使GUI做出响应。程序员必须应用互斥构造、锁定/解锁、等待条件/信号、处理死锁等。多个线程可以在单个处理器/内核上运行(从计算机的角度来看是并发的),也可以在多个内核上运行。
并行编程:程序员知道程序将在具有多个处理器/内核的计算机上运行,并希望利用多个内核。程序员将CPU密集型计算划分为多个子任务,在一个线程中运行每个子任务,一旦线程完成,其结果将合并为总结果(分而治之)。例如,将一些矩阵处理代码划分为并行处理矩阵部分的任务。每个核心将使用子任务执行一个线程(如果线程数大于内核数,则同时执行多个线程)。程序员也必须在这里应用并发的编程构造,但她也关注将任务划分为子任务并合并结果。例如,在Java中,程序员可以使用ParallelStreams来分割数据并自动合并结果。如果程序员知道程序将在单核处理器上执行,那么将CPU密集型任务拆分为多个线程是没有好处的。摘自Doug Leah的《Java并发编程:设计原则和模式》,1999年第2版,第343页:
并行程序专门设计为利用多个CPU来解决计算密集型问题。
通过查阅字典,你可以看到并发(来自拉丁语)意味着一起运行、聚合、同意;因此,需要同步,因为在相同的资源上存在竞争。平行(来自希腊语)的意思是在侧面复制;从而在同一时间做同样的事情。
我将尝试用一个有趣且易于理解的示例进行解释。:)
假设一个组织组织了一场国际象棋比赛,10名棋手(棋艺相同)将挑战一名职业冠军棋手。由于国际象棋是一场1:1的比赛,因此组织者必须以高效的方式进行10场比赛,以便尽快完成整个比赛。
希望以下场景能够轻松描述进行这10场比赛的多种方式:
1) 串行-让我们假设专业人员与每个人逐一进行游戏,即与一个人开始和结束游戏,然后与下一个人开始下一场游戏,依此类推。换句话说,他们决定按顺序进行游戏。因此,如果一场比赛需要10分钟才能完成,那么10场比赛将需要100分钟,同样假设从一场比赛到另一场比赛的过渡需要6秒,那么对于10场比赛,则需要54秒(约1分钟)。
因此整个活动将在101分钟内完成(最差进场)
2) 同时-让我们假设职业球员轮到下一个球员,所以所有10名球员同时上场,但职业球员不是一次两个人,他轮到下一个人上场。现在假设一名职业球员需要6秒才能轮到他,而一名职业选手与两名选手的转换时间为6秒,那么回到第一名选手的总转换时间为1分钟(10x6秒)。因此,当他回到第一个与他一起开始比赛的人身边时,已经过去了2分钟(10xtime_per_turn_by-campion+10xtransition_time=2分钟)
假设所有玩家都需要45秒才能完成他们的回合,那么根据SERIAL事件的每场10分钟,游戏结束前的回合数应为600/(45+6)=11回合(约)
因此,整个事件将在11xtime_per_turn_by-player_&_champion+11xtransition_time_across_10_players=11x51+11x60sec=561+660=1221sec=20.35min(大约)内完成
从101分钟提高到20.35分钟(更好的方法)
3) 平行-假设组织者获得了一些额外的资金,因此决定邀请两名职业冠军选手(两人能力相同),并将同一组10名选手(挑战者)分成两组,每组5人,并将他们分配给两名冠军,即每组一人。现在,赛事在这两组比赛中并行进行,即至少有两名选手(每组一名)与各自组的两名职业选手进行比赛。
然而,在该组中,职业选手一次只带一名选手(即按顺序),因此无需任何计算,您可以很容易地推断出整个比赛将在101/2=50.5分钟内完成
看到从101分钟到50.5分钟的进步(好方法)
4) 并发+并行-在上述场景中,假设两名冠军选手将与各自组中的5名选手同时比赛(读第二分),因此现在跨组的比赛是并行运行的,但在组内,他们是同时运行的。
因此,一组游戏将在11xtime_per_turn_by-playerer_&_champion+1extransition_time_across_5_layers=11x51+11x30=600+330=930秒=15.5分钟(大约)内完成
因此,整个活动(包括两个这样的平行跑步组)大约将在15.5分钟内完成
看到从101分钟到15.5分钟的改进(最佳方法)
注意:在上述场景中,如果您用10个类似的工作替换10个玩家,用两个CPU核心替换两个职业玩家,则以下顺序仍然正确:
串行>并行>并发>并发+并行
(注意:此顺序可能会因其他情况而改变,因为此顺序高度依赖于作业之间的相互依赖性、作业之间的通信需求以及作业之间的转换开销)
“并发”是指有多件事情正在进行。
“并行性”是指并发的事情同时进行。
没有并行性的并发示例:
单个内核上有多个线程。Win32消息队列中有多条消息。MARS连接上有多个SqlDataReader。浏览器选项卡中有多个JavaScript承诺。
然而,请注意,并发性和并行性之间的区别通常是一个视角问题。从执行代码(可观察到的效果)的角度来看,上述示例是非并行的。但即使在单个内核中也存在指令级并行性。有一些硬件与CPU并行工作,然后在完成时中断CPU。在执行窗口过程或事件处理程序时,GPU可能正在绘制到屏幕。当您仍然获取上一个查询的结果时,DBMS可能正在为下一个查询遍历B树。执行Promise.resolve()时,浏览器可能正在进行布局或联网。等等。。。
好了。世界一如既往地混乱;)
简单地说,并发就是同时处理很多事情。
“处理”一词用粗体显示了并发和并行之间的区别。同时处理许多事情意味着同时完成许多事情,但它们是否同时执行并不重要。另一方面,并行意味着同时做很多事情(同时执行)。因此,可以使用一个或多个处理资源来实现并发上下文。使用一个处理资源同时处理许多事情意味着通过在任务之间进行上下文切换,可以同时执行许多事情。另一方面,具有许多处理资源的并发上下文意味着进行并行处理。这意味着我们通过并行来实现并发,但反之亦然。
在我的文章中,您可能想了解更多关于并发性和并行性及其与当今技术的关系。