这是一个logistic sigmoid函数:

我知道x,现在如何用Python计算F(x) ?

设x = 0.458。

F(x) = ?


当前回答

import numpy as np

def sigmoid(x):
    s = 1 / (1 + np.exp(-x))
    return s

result = sigmoid(0.467)
print(result)

上面的代码是python中的逻辑sigmoid函数。 如果已知x = 0.467, s型函数F(x) = 0.385。你可以尝试在上面的代码中替换任何你知道的x值,你会得到一个不同的F(x)值。

其他回答

另一种方法是变换tanh函数

sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)

使用pandas DataFrame/Series或numpy数组时的向量化方法:

上面的答案是用于单点计算的优化方法,但当你想将这些方法应用到pandas系列或numpy数组时,它需要apply,这基本上是在后台进行循环,将遍历每一行并应用该方法。这是非常低效的。

为了加速我们的代码,我们可以使用向量化和numpy广播:

x = np.arange(-5,5)
np.divide(1, 1+np.exp(-x))

0    0.006693
1    0.017986
2    0.047426
3    0.119203
4    0.268941
5    0.500000
6    0.731059
7    0.880797
8    0.952574
9    0.982014
dtype: float64

或与熊猫系列:

x = pd.Series(np.arange(-5,5))
np.divide(1, 1+np.exp(-x))

下面是执行相同操作的python函数。

def sigmoid(x) :
    return 1.0/(1+np.exp(-x))

Tensorflow还包括一个sigmoid函数: https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/sigmoid

import tensorflow as tf

sess = tf.InteractiveSession()
x = 0.458
y = tf.sigmoid(x)

u = y.eval()
print(u)
# 0.6125396

如果把-放在x前面使您感到困惑,您可以简单地声明1 / np.exp(x)。

def sigmoid(x):
     return 1 /(1 + 1 / np.exp(x))

sigmoid(0.458)