我想定义一个没有初始化长度的二维数组,如下所示:

Matrix = [][]

但这给出了一个错误:

IndexError:列表索引超出范围


当前回答

如果你只需要一个二维容器来容纳一些元素,你可以方便地使用字典来代替:

Matrix = {}

然后您可以执行以下操作:

Matrix[1,2] = 15
print Matrix[1,2]

这是因为1,2是一个元组,您将其用作索引字典的键。结果类似于哑稀疏矩阵。

如osa和Josap Valls所示,您还可以使用Matrix=collections.defaultdict(lambda:0),以便丢失的元素具有默认值0。

Vatsal进一步指出,这种方法对于大型矩阵可能不是很有效,只应在代码的非性能关键部分使用。

其他回答

如果您需要具有预定义数字的矩阵,可以使用以下代码:

def matrix(rows, cols, start=0):
    return [[c + start + r * cols for c in range(cols)] for r in range(rows)]


assert matrix(2, 3, 1) == [[1, 2, 3], [4, 5, 6]]

如果您希望能够将其视为2D阵列,而不是被迫根据列表进行思考(在我看来更自然),可以执行以下操作:

import numpy
Nx=3; Ny=4
my2Dlist= numpy.zeros((Nx,Ny)).tolist()

结果是一个列表(不是NumPy数组),您可以用数字、字符串等覆盖各个位置。

如果你真的想要一个矩阵,你最好使用numpy。numpy中的矩阵运算通常使用二维数组类型。创建新阵列有多种方法;其中最有用的是zeros函数,它接受一个形状参数并返回一个给定形状的数组,值初始化为零:

>>> import numpy
>>> numpy.zeros((5, 5))
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])

以下是创建二维数组和矩阵的一些其他方法(为了紧凑,去掉了输出):

numpy.arange(25).reshape((5, 5))         # create a 1-d range and reshape
numpy.array(range(25)).reshape((5, 5))   # pass a Python range and reshape
numpy.array([5] * 25).reshape((5, 5))    # pass a Python list and reshape
numpy.empty((5, 5))                      # allocate, but don't initialize
numpy.ones((5, 5))                       # initialize with ones

numpy也提供了一种矩阵类型,但它不再推荐用于任何用途,将来可能会从numpy中删除。

在Python中,您将创建一个列表列表。您不必提前声明维度,但可以这样做。例如:

matrix = []
matrix.append([])
matrix.append([])
matrix[0].append(2)
matrix[1].append(3)

现在矩阵[0][0]==2,矩阵[1][0]==3。您还可以使用列表理解语法。本示例使用它两次来构建“二维列表”:

from itertools import count, takewhile
matrix = [[i for i in takewhile(lambda j: j < (k+1) * 10, count(k*10))] for k in range(10)]

可以通过将两个或多个方括号或第三个方括号([],用逗号分隔)与方括号嵌套来创建一个空的二维列表,如下所示:

Matrix = [[], []]

现在假设您想将1附加到矩阵[0][0],然后键入:

Matrix[0].append(1)

现在,键入矩阵并按Enter键。输出将为:

[[1], []]

如果您输入以下语句

Matrix[1].append(1)

那么矩阵将是

[[], [1]]