我想定义一个没有初始化长度的二维数组,如下所示:

Matrix = [][]

但这给出了一个错误:

IndexError:列表索引超出范围


当前回答

要声明一个零(1)矩阵:

numpy.zeros((x, y))

e.g.

>>> numpy.zeros((3, 5))
    array([[ 0.,  0.,  0.,  0.,  0.],
   [ 0.,  0.,  0.,  0.,  0.],
   [ 0.,  0.,  0.,  0.,  0.]])

或numpy.ones((x,y))例如

>>> np.ones((3, 5))
array([[ 1.,  1.,  1.,  1.,  1.],
   [ 1.,  1.,  1.,  1.,  1.],
   [ 1.,  1.,  1.,  1.,  1.]])

甚至三维都是可能的。(http://www.astro.ufl.edu/~warner/prog/python.html请参见-->多维数组)

其他回答

Use:

matrix = [[0]*5 for i in range(5)]

第一个维度的*5有效,因为在这个级别上数据是不可变的。

试试看:

rows = int(input('Enter rows\n'))
my_list = []
for i in range(rows):
    my_list.append(list(map(int, input().split())))

公认的答案是正确的,但我花了一段时间才明白,我也可以使用它创建一个完全空的数组。

l =  [[] for _ in range(3)]

结果

[[], [], []]

通常,go to模块是NumPy:

import numpy as np
   
# Generate a random matrix of floats
np.random.rand(cols,rows)

# Generate a random matrix of integers
np.random.randint(1, 10, size=(cols,rows))

如果你只需要一个二维容器来容纳一些元素,你可以方便地使用字典来代替:

Matrix = {}

然后您可以执行以下操作:

Matrix[1,2] = 15
print Matrix[1,2]

这是因为1,2是一个元组,您将其用作索引字典的键。结果类似于哑稀疏矩阵。

如osa和Josap Valls所示,您还可以使用Matrix=collections.defaultdict(lambda:0),以便丢失的元素具有默认值0。

Vatsal进一步指出,这种方法对于大型矩阵可能不是很有效,只应在代码的非性能关键部分使用。