如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
如何根据Pandas中某列的值从DataFrame中选择行?
在SQL中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
当前回答
要添加:您还可以执行df.groupby('column_name').get_group('column_desired_value').reset_index()以生成具有特定值的指定列的新数据帧。例如。,
import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split()})
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
运行此命令可以:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two
其他回答
您可以在函数中使用loc(方括号):
# Series
s = pd.Series([1, 2, 3, 4])
s.loc[lambda x: x > 1]
# s[lambda x: x > 1]
输出:
1 2
2 3
3 4
dtype: int64
or
# DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [10, 20, 30]})
df.loc[lambda x: x['A'] > 1]
# df[lambda x: x['A'] > 1]
输出:
A B
1 2 20
2 3 30
我发现前面答案的语法是多余的,很难记住。Pandas在v0.13中引入了query()方法,我更喜欢它。对于您的问题,您可以使用df.query('col==val')。
转载自query()方法(实验):
In [167]: n = 10
In [168]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [169]: df
Out[169]:
a b c
0 0.687704 0.582314 0.281645
1 0.250846 0.610021 0.420121
2 0.624328 0.401816 0.932146
3 0.011763 0.022921 0.244186
4 0.590198 0.325680 0.890392
5 0.598892 0.296424 0.007312
6 0.634625 0.803069 0.123872
7 0.924168 0.325076 0.303746
8 0.116822 0.364564 0.454607
9 0.986142 0.751953 0.561512
# pure python
In [170]: df[(df.a < df.b) & (df.b < df.c)]
Out[170]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
# query
In [171]: df.query('(a < b) & (b < c)')
Out[171]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
您还可以通过在环境中添加@来访问变量。
exclude = ('red', 'orange')
df.query('color not in @exclude')
使用带有panda>=0.25.00的.query更灵活:
由于panda>=0.25.00,我们可以使用查询方法来使用panda方法过滤数据帧,甚至可以使用带有空格的列名。通常,列名中的空格会给出一个错误,但现在我们可以使用backtick(`)来解决这个问题-请参见GitHub:
# Example dataframe
df = pd.DataFrame({'Sender email':['ex@example.com', "reply@shop.com", "buy@shop.com"]})
Sender email
0 ex@example.com
1 reply@shop.com
2 buy@shop.com
将.query与方法str.endswith一起使用:
df.query('`Sender email`.str.endswith("@shop.com")')
输出
Sender email
1 reply@shop.com
2 buy@shop.com
此外,我们还可以通过在查询中用@前缀来使用局部变量:
domain = 'shop.com'
df.query('`Sender email`.str.endswith(@domain)')
输出
Sender email
1 reply@shop.com
2 buy@shop.com
使用DuckDB选择行的DataFrames上的SQL语句
使用DuckDB,我们可以用SQL语句以高性能的方式查询panda DataFrames。
由于问题是如何根据列值从DataFrame中选择行?,问题中的示例是一个SQL查询,这个答案在本主题中看起来很合理。
例子:
In [1]: import duckdb
In [2]: import pandas as pd
In [3]: con = duckdb.connect()
In [4]: df = pd.DataFrame({"A": range(11), "B": range(11, 22)})
In [5]: df
Out[5]:
A B
0 0 11
1 1 12
2 2 13
3 3 14
4 4 15
5 5 16
6 6 17
7 7 18
8 8 19
9 9 20
10 10 21
In [6]: results = con.execute("SELECT * FROM df where A > 2").df()
In [7]: results
Out[7]:
A B
0 3 14
1 4 15
2 5 16
3 6 17
4 7 18
5 8 19
6 9 20
7 10 21
很好的答案。只有当数据帧的大小接近百万行时,许多方法在使用df[df['col']==val]时往往需要很长时间。我希望“another_column”的所有可能值都对应于“some_column“中的特定值(在本例中是在字典中)。这起作用很快。
s=datetime.datetime.now()
my_dict={}
for i, my_key in enumerate(df['some_column'].values):
if i%100==0:
print(i) # to see the progress
if my_key not in my_dict.keys():
my_dict[my_key]={}
my_dict[my_key]['values']=[df.iloc[i]['another_column']]
else:
my_dict[my_key]['values'].append(df.iloc[i]['another_column'])
e=datetime.datetime.now()
print('operation took '+str(e-s)+' seconds')```