我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
当前回答
在Java中,这个算法比这个算法更简洁
public static int permutate2(int number){
String[] numArray = String.valueOf(number).split("");
for(int i = numArray.length - 1; i > 0; i--){
int current = Integer.valueOf(numArray[i]);
int previous = Integer.valueOf(numArray[i - 1]);
if(previous < current){
String[] rest = String.valueOf(number).substring(i, numArray.length).split("");
Arrays.sort(rest);
String picker = rest[0];
int pickerIndex = 0;
for(int n = 0; n < rest.length ; n++){
if(Integer.valueOf(rest[n]) > previous){
picker = rest[n];
pickerIndex = n;
break;
}
}
numArray[i - 1] = picker;
rest[pickerIndex] = String.valueOf(previous);
Arrays.sort(rest);
String newNumber = "";
for(int z = 0; z <= i - 1; z++){
newNumber += numArray[z];
}
for(String z : rest){
newNumber += z;
}
return Integer.valueOf(newNumber);
}
}
return number;
}
其他回答
这是我的代码,它是这个例子的修改版本
库:
class NumPermExample
{
// print N! permutation of the characters of the string s (in order)
public static void perm1(String s, ArrayList<String> perm)
{
perm1("", s);
}
private static void perm1(String prefix, String s, ArrayList<String> perm)
{
int N = s.length();
if (N == 0)
{
System.out.println(prefix);
perm.add(prefix);
}
else
{
for (int i = 0; i < N; i++)
perm1(prefix + s.charAt(i), s.substring(0, i)
+ s.substring(i+1, N));
}
}
// print N! permutation of the elements of array a (not in order)
public static void perm2(String s, ArrayList<String> perm)
{
int N = s.length();
char[] a = new char[N];
for (int i = 0; i < N; i++)
a[i] = s.charAt(i);
perm2(a, N);
}
private static void perm2(char[] a, int n, ArrayList<String> perm)
{
if (n == 1)
{
System.out.println(a);
perm.add(new String(a));
return;
}
for (int i = 0; i < n; i++)
{
swap(a, i, n-1);
perm2(a, n-1);
swap(a, i, n-1);
}
}
// swap the characters at indices i and j
private static void swap(char[] a, int i, int j)
{
char c;
c = a[i]; a[i] = a[j]; a[j] = c;
}
// next higher permutation
public static int nextPermutation (int number)
{
ArrayList<String> perm = new ArrayList<String>();
String cur = ""+number;
int nextPerm = 0;
perm1(cur, perm);
for (String s : perm)
{
if (Integer.parseInt(s) > number
&& (nextPerm == 0 ||
Integer.parseInt(s) < nextPerm))
{
nextPerm = Integer.parseInt(s);
}
}
return nextPerm;
}
}
测试:
public static void main(String[] args)
{
int a = 38276;
int b = NumPermExample.nextPermutation(a);
System.out.println("a: "+a+", b: "+b);
}
I didn't know anything about the brute force algorithm when answering this question, so I approached it from another angle. I decided to search the entire range of possible solutions that this number could possibly be rearranged into, starting from the number_given+1 up to the max number available (999 for a 3 digit number, 9999 for 4 digits, etc.). I did this kind of like finding a palindrome with words, by sorting the numbers of each solution and comparing it to the sorted number given as the parameter. I then simply returned the first solution in the array of solutions, as this would be the next possible value.
下面是我的Ruby代码:
def PermutationStep(num)
a = []
(num.to_s.length).times { a.push("9") }
max_num = a.join('').to_i
verify = num.to_s.split('').sort
matches = ((num+1)..max_num).select {|n| n.to_s.split('').sort == verify }
if matches.length < 1
return -1
else
matches[0]
end
end
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<string.h>
#include<sstream>
#include<iostream>
using namespace std;
int compare (const void * a, const void * b)
{
return *(char*)a-*(char*)b;
}
/*-----------------------------------------------*/
int main()
{
char number[200],temp;
cout<<"please enter your number?"<<endl;
gets(number);
int n=strlen(number),length;
length=n;
while(--n>0)
{
if(number[n-1]<number[n])
{
for(int i=length-1;i>=n;i--)
{
if(number[i]>number[n-1])
{
temp=number[i];
number[i]=number[n-1];
number[n-1]=temp;
break;
}
}
qsort(number+n,length-n,sizeof(char),compare);
puts(number);
return 0;
}
}
cout<<"sorry itz the greatest one :)"<<endl;
}
#include <iostream>
using namespace std;
int main ()
{
int num=15432;
int quot,rem;
int numarr[5];
int length=0;
while(num!=0)
{
rem=num%10;
num = num/10;
numarr[length]=rem;
length++;
}
for(int j=0;j<length;j++)
{
for(int i=0;i<length;i++)
{
if(numarr[i]<numarr[i+1])
{
int tmp=numarr[i];
numarr[i]=numarr[i+1];
numarr[i+1]=tmp;
}
}
}
for(int j=0;j<length;j++)
{
cout<<numarr[j];
}
return 0;
}
一个几乎相同的问题出现了Code Jam问题,这里有一个解决方案:
http://code.google.com/codejam/contest/dashboard?c=186264#s=a&a=1
下面用一个例子总结一下这个方法:
34722641
A.将数字序列分成两部分,使右边的部分尽可能长,同时保持递减顺序:
34722 641
(如果整个数字是递减的,就没有比这个数字更大的数字了。)
在这一点上,你知道没有从左边开始的更大的数了,因为右边的剩余数字已经尽可能大了。
责任。选择第一个序列的最后一位:
3472(2) 641
B.2。找出第二个序列中比它大的最小的数字:
3472(2) 6(4)1
你要做的就是找到左边可能的最小增量。
B.3。交换:
3472(2) 6(4)1
->
3472(4) 6(2)1
->
34724 621
C.将第二个序列按递增顺序排序:
34724 126
d .完成了!
34724126
你把这个数字分开,这样你就知道没有更大的数字具有相同的左边部分,你把左边部分增加了尽可能小的量,你让剩下的右边部分尽可能小,所以你可以确保这个新数字是用相同的数字集合可以得到的最小的更大的数字。