我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
我刚刚搞砸了一次面试,而且我的面试问题几乎毫无进展。
给定一个数,找出下一个与之完全相同的更大的数 作为原始数字的数字集。例如:给定38276返回 38627
我想从找到第一个比个位小的数字的下标开始。然后我将旋转子集中的最后一个数字,这样它是由相同的数字组成的下一个最大的数字,但卡住了。
面试官还建议我试着一次换一个数字,但我搞不懂算法,只能盯着屏幕看20-30分钟。不用说,我想我还得继续找工作。
当前回答
我只测试了两个数字。他们工作。 在去年12月退休之前,我做了8年的IT经理,我关心三件事: 1)准确性:如果它总是有效,那就很好。 2)速度:用户可以接受。 3)明确:我可能没有你聪明,但我付你薪水。确保你用英语解释你在做什么。
奥马尔,祝你好运。
Sub Main()
Dim Base(0 To 9) As Long
Dim Test(0 To 9) As Long
Dim i As Long
Dim j As Long
Dim k As Long
Dim ctr As Long
Const x As Long = 776914648
Dim y As Long
Dim z As Long
Dim flag As Boolean
' Store the digit count for the original number in the Base vector.
For i = 0 To 9
ctr = 0
For j = 1 To Len(CStr(x))
If Mid$(CStr(x), j, 1) = i Then ctr = ctr + 1
Next j
Base(i) = ctr
Next i
' Start comparing from the next highest number.
y = x + 1
Do
' Store the digit count for the each new number in the Test vector.
flag = False
For i = 0 To 9
ctr = 0
For j = 1 To Len(CStr(y))
If Mid$(CStr(y), j, 1) = i Then ctr = ctr + 1
Next j
Test(i) = ctr
Next i
' Compare the digit counts.
For k = 0 To 9
If Test(k) <> Base(k) Then flag = True
Next k
' If no match, INC and repeat.
If flag = True Then
y = y + 1
Erase Test()
Else
z = y ' Match.
End If
Loop Until z > 0
MsgBox (z), , "Solution"
End Sub
其他回答
Ruby的解决方案
def next_bigger(num)
char_array = num.to_s.split('')
return -1 if char_array.uniq.size == 1
arr, target_idx, target_char = [], nil, nil
# get first left-digit less than the right from right side
(char_array.count - 1).times do |i|
arr.unshift(char_array[-(i+1)])
if char_array[-(i+2)] < char_array[-(i+1)]
target_idx = char_array.count - (i + 2)
target_char = char_array[-(i+2)]
arr.unshift(char_array[-(i+2)])
break
end
end
return -1 unless target_idx
# first smallest digit larger than target_char to the right
((target_char.to_i + 1)..9).to_a.each do |ch|
if arr.index(ch.to_s)
flip_char = arr.delete_at(arr.index(ch.to_s))
# sort the digits to the right of flip_char
arr.sort!
# place flip_char to the left of target_char
arr.unshift(flip_char)
break
end
end
(char_array[0...target_idx] + arr).join().to_i
end
我知道这是一个非常老的问题,但我仍然没有在c#中找到简单的代码。这可能会对参加面试的男士有所帮助。
class Program
{
static void Main(string[] args)
{
int inputNumber = 629;
int i, currentIndexOfNewArray = 0;
int[] arrayOfInput = GetIntArray(inputNumber);
var numList = arrayOfInput.ToList();
int[] newArray = new int[arrayOfInput.Length];
do
{
int temp = 0;
int digitFoundAt = 0;
for (i = numList.Count; i > 0; i--)
{
if (numList[i - 1] > temp)
{
temp = numList[i - 1];
digitFoundAt = i - 1;
}
}
newArray[currentIndexOfNewArray] = temp;
currentIndexOfNewArray++;
numList.RemoveAt(digitFoundAt);
} while (arrayOfInput.Length > currentIndexOfNewArray);
Console.WriteLine(GetWholeNumber(newArray));
Console.ReadKey();
}
public static int[] GetIntArray(int num)
{
IList<int> listOfInts = new List<int>();
while (num > 0)
{
listOfInts.Add(num % 10);
num = num / 10;
}
listOfInts.Reverse();
return listOfInts.ToArray();
}
public static double GetWholeNumber(int[] arrayNumber)
{
double result = 0;
double multiplier = 0;
var length = arrayNumber.Count() - 1;
for(int i = 0; i < arrayNumber.Count(); i++)
{
multiplier = Math.Pow(10.0, Convert.ToDouble(length));
result += (arrayNumber[i] * multiplier);
length = length - 1;
}
return result;
}
}
我们需要找到最右边的0位,后面是1,然后将最右边的0位翻转为1。
例如,我们的输入是487,也就是二进制的111100111。
我们把后面有1的0往右翻转最多
所以我们得到 111101111
但是现在我们多了一个1,少了一个0,所以我们减少了右边1的个数 位增加1,并将0位的no增加1,得到
111101011 -二进制491
int getNextNumber(int input)
{
int flipPosition=0;
int trailingZeros=0;
int trailingOnes=0;
int copy = input;
//count trailing zeros
while(copy != 0 && (copy&1) == 0 )
{
++trailingZeros;
//test next bit
copy = copy >> 1;
}
//count trailing ones
while(copy != 0 && (copy&1) == 1 )
{
++trailingOnes;
//test next bit
copy = copy >> 1;
}
//if we have no 1's (i.e input is 0) we cannot form another pattern with
//the same number of 1's which will increment the input, or if we have leading consecutive
//ones followed by consecutive 0's up to the maximum bit size of a int
//we cannot increase the input whilst preserving the original no of 0's and
//1's in the bit pattern
if(trailingZeros + trailingOnes == 0 || trailingZeros + trailingOnes == 31)
return -1;
//flip first 0 followed by a 1 found from the right of the bit pattern
flipPosition = trailingZeros + trailingOnes+1;
input |= 1<<(trailingZeros+trailingOnes);
//clear fields to the right of the flip position
int mask = ~0 << (trailingZeros+trailingOnes);
input &= mask;
//insert a bit pattern to the right of the flip position that will contain
//one less 1 to compensate for the bit we switched from 0 to 1
int insert = flipPosition-1;
input |= insert;
return input;
}
这是另一个Java实现,可以开箱即用,并通过测试完成。 这个解决方案是O(n)个空间和时间,使用老式的动态规划。
如果你想用蛮力,有两种蛮力:
排列所有的东西,然后选择最小值更高的:O(n!) 与此实现类似,但不是DP,而是强制填充的步骤 indexToIndexOfNextSmallerLeft映射将在O(n²)中运行。
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
public class NextHigherSameDigits {
public long next(final long num) {
final char[] chars = String.valueOf(num).toCharArray();
final int[] digits = new int[chars.length];
for (int i = 0; i < chars.length; i++) {
digits[i] = Character.getNumericValue(chars[i]);
}
final Map<Integer, Integer> indexToIndexOfNextSmallerLeft = new HashMap<>();
indexToIndexOfNextSmallerLeft.put(1, digits[1] > digits[0] ? 0 : null);
for (int i = 2; i < digits.length; i++) {
final int left = digits[i - 1];
final int current = digits[i];
Integer indexOfNextSmallerLeft = null;
if (current > left) {
indexOfNextSmallerLeft = i - 1;
} else {
final Integer indexOfnextSmallerLeftOfLeft = indexToIndexOfNextSmallerLeft.get(i - 1);
final Integer nextSmallerLeftOfLeft = indexOfnextSmallerLeftOfLeft == null ? null :
digits[indexOfnextSmallerLeftOfLeft];
if (nextSmallerLeftOfLeft != null && current > nextSmallerLeftOfLeft) {
indexOfNextSmallerLeft = indexOfnextSmallerLeftOfLeft;
} else {
indexOfNextSmallerLeft = null;
}
}
indexToIndexOfNextSmallerLeft.put(i, indexOfNextSmallerLeft);
}
Integer maxOfindexOfNextSmallerLeft = null;
Integer indexOfMinToSwapWithNextSmallerLeft = null;
for (int i = digits.length - 1; i >= 1; i--) {
final Integer indexOfNextSmallerLeft = indexToIndexOfNextSmallerLeft.get(i);
if (maxOfindexOfNextSmallerLeft == null ||
(indexOfNextSmallerLeft != null && indexOfNextSmallerLeft > maxOfindexOfNextSmallerLeft)) {
maxOfindexOfNextSmallerLeft = indexOfNextSmallerLeft;
if (maxOfindexOfNextSmallerLeft != null && (indexOfMinToSwapWithNextSmallerLeft == null ||
digits[i] < digits[indexOfMinToSwapWithNextSmallerLeft])) {
indexOfMinToSwapWithNextSmallerLeft = i;
}
}
}
if (maxOfindexOfNextSmallerLeft == null) {
return -1;
} else {
swap(digits, indexOfMinToSwapWithNextSmallerLeft, maxOfindexOfNextSmallerLeft);
reverseRemainingOfArray(digits, maxOfindexOfNextSmallerLeft + 1);
return backToLong(digits);
}
}
private void reverseRemainingOfArray(final int[] digits, final int startIndex) {
final int[] tail = Arrays.copyOfRange(digits, startIndex, digits.length);
for (int i = tail.length - 1; i >= 0; i--) {
digits[(digits.length - 1) - i] = tail[i];
}
}
private void swap(final int[] digits, final int currentIndex, final int indexOfNextSmallerLeft) {
int temp = digits[currentIndex];
digits[currentIndex] = digits[indexOfNextSmallerLeft];
digits[indexOfNextSmallerLeft] = temp;
}
private long backToLong(int[] digits) {
StringBuilder sb = new StringBuilder();
for (long i : digits) {
sb.append(String.valueOf(i));
}
return Long.parseLong(sb.toString());
}
@Test
public void test() {
final long input1 = 34722641;
final long expected1 = 34724126;
final long output1 = new NextHigherSameDigits().next(input1);
assertEquals(expected1, output1);
final long input2 = 38276;
final long expected2 = 38627;
final long output2 = new NextHigherSameDigits().next(input2);
assertEquals(expected2, output2);
final long input3 = 54321;
final long expected3 = -1;
final long output3 = new NextHigherSameDigits().next(input3);
assertEquals(expected3, output3);
final long input4 = 123456784987654321L;
final long expected4 = 123456785123446789L;
final long output4 = new NextHigherSameDigits().next(input4);
assertEquals(expected4, output4);
final long input5 = 9999;
final long expected5 = -1;
final long output5 = new NextHigherSameDigits().next(input5);
assertEquals(expected5, output5);
}
}
这是个很有趣的问题。
这是我的java版本。在我检查其他贡献者的评论之前,从弄清楚模式到完全完成代码,我花了大约3个小时。很高兴看到我的想法和别人一样。
O (n)的解决方案。老实说,如果时间只有15分钟,并且要求在白板上完成完整的代码,我将会失败。
以下是我的解决方案的一些有趣点:
避免任何排序。 完全避免字符串操作 实现O(logN)空间复杂度
我在代码中添加了详细注释,并在每个步骤中添加了大O。
public int findNextBiggestNumber(int input ) {
//take 1358642 as input for example.
//Step 1: split the whole number to a list for individual digital 1358642->[2,4,6,8,5,3,1]
// this step is O(n)
int digitalLevel=input;
List<Integer> orgNumbersList=new ArrayList<Integer>() ;
do {
Integer nInt = new Integer(digitalLevel % 10);
orgNumbersList.add(nInt);
digitalLevel=(int) (digitalLevel/10 ) ;
} while( digitalLevel >0) ;
int len= orgNumbersList.size();
int [] orgNumbers=new int[len] ;
for(int i=0;i<len;i++){
orgNumbers[i ] = orgNumbersList.get(i).intValue();
}
//step 2 find the first digital less than the digital right to it
// this step is O(n)
int firstLessPointer=1;
while(firstLessPointer<len&&(orgNumbers[firstLessPointer]>orgNumbers[ firstLessPointer-1 ])){
firstLessPointer++;
}
if(firstLessPointer==len-1&&orgNumbers[len-1]>=orgNumbers[len-2]){
//all number is in sorted order like 4321, no answer for it, return original
return input;
}
//when step 2 step finished, firstLessPointer pointing to number 5
//step 3 fristLessPointer found, need to find to first number less than it from low digital in the number
//This step is O(n)
int justBiggerPointer= 0 ;
while(justBiggerPointer<firstLessPointer&& orgNumbers[justBiggerPointer]<orgNumbers[firstLessPointer]){
justBiggerPointer++;
}
//when step 3 finished, justBiggerPointer pointing to 6
//step 4 swap the elements of justBiggerPointer and firstLessPointer .
// This is O(1) operation for swap
int tmp= orgNumbers[firstLessPointer] ;
orgNumbers[firstLessPointer]= orgNumbers[justBiggerPointer] ;
orgNumbers[justBiggerPointer]=tmp ;
// when step 4 finished, the list looks like [2,4,5,8,6,3,1] the digital in the list before
// firstLessPointer is already sorted in our previous operation
// we can return result from this list but in a differrent way
int result=0;
int i=0;
int lowPointer=firstLessPointer;
//the following pick number from list from the position just before firstLessPointer, here is 8 -> 5 -> 4 -> 2
//This Operation is O(n)
while(lowPointer>0) {
result+= orgNumbers[--lowPointer]* Math.pow(10,i);
i++;
}
//the following pick number from list from position firstLessPointer
//This Operation is O(n)
while(firstLessPointer<len) {
result+= orgNumbers[firstLessPointer++ ]* Math.pow(10,i);
i++;
}
return result;
}
下面是在Intellj中运行的结果:
959879532-->959892357
1358642-->1362458
1234567-->1234576
77654321-->77654321
38276-->38627
47-->74