我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?

我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?

这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。


当前回答

我刚开始学习Python,然后一头栽进Lambda——这花了我一段时间才弄明白。

请注意,这不是对任何事情的谴责。每个人都有不容易得到的东西。

lambda是那些在现实生活中应该被遗忘的“有趣”语言项目之一吗?

No.

我相信有一些边缘情况可能需要它,但考虑到它的模糊性,

它并不晦涩。在我过去工作过的两个团队中,每个人都一直在使用这个功能。

它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)

除了几年前修复闭包语义之外,我还没有看到在Python中重新定义它的严肃建议。

编码清晰度的降低——应该避免吗?

如果你用对了,也不会不太清楚。相反,拥有更多可用的语言结构可以增加清晰度。

这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值……有点像技术人员的表演技巧,但维护程序员的噩梦。

就像缓冲区溢出?哇。如果您认为lambda是一个“维护噩梦”,我无法想象您将如何使用它。

其他回答

我可以给你们一个我需要的例子。我正在制作一个图形程序,其中使用右键单击文件并为其分配三个选项之一。事实证明,在Tkinter(我在其中编写的GUI接口程序)中,当有人按下按钮时,它不能被分配给接受参数的命令。所以如果我选择了其中一个选项并希望我选择的结果是:

print 'hi there'

那没什么大不了的。但是如果我需要我的选择有一个特定的细节。例如,如果我选择选项A,它会调用一个函数,该函数接受依赖于选项A、B或C的一些参数,TKinter不支持这一点。拉姆达是唯一的选择,实际上…

在Python中,lambda只是内联定义函数的一种方式,

a = lambda x: x + 1
print a(1)

和. .

def a(x): return x + 1
print a(1)

..是完全一样的。

你可以用lambda做任何常规函数做不到的事情——Python函数和其他任何东西一样都是对象,lambdas只是定义一个函数:

>>> a = lambda x: x + 1
>>> type(a)
<type 'function'>

老实说,我认为lambda关键字在python中是多余的——我从来没有需要使用它们(或者见过使用它们的地方,常规函数、列表理解或许多内置函数中的一个本可以更好地使用)。

对于一个完全随机的例子,摘自文章“Python的lambda被破坏了!”:

要查看lambda是如何被破坏的,请尝试生成一个函数fs=[f0,…,f9]其中fi(n)=i+n。第一次尝试: >>> fs = [(lambda n: I + n) for I in range(10)] > > > fs [3] (4) 13

我想说的是,即使这样确实有效,它也太可怕了,而且是“非python化的”,同样的功能可以用无数其他方式来编写,例如:

>>> n = 4
>>> [i + n for i in range(10)]
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

是的,这是不一样的,但我从未见过需要在列表中生成一组lambda函数的原因。这在其他语言中可能是有意义的,但Python不是Haskell(或Lisp,或…)

请注意,我们可以使用lambda,仍然可以达到预期的效果 结果如下: >>> fs = [(lambda n,i=i: i + n) for i in range(10)] > > > fs [3] (4) 7

编辑:

在一些情况下lambda是有用的,例如在PyQt应用程序中连接信号时,它通常很方便,像这样:

w = PyQt4.QtGui.QLineEdit()
w.textChanged.connect(lambda event: dothing())

只是执行w.textChanged.connect(dothing)将使用额外的事件参数调用dothing方法并导致错误。使用lambda意味着我们可以整齐地删除参数,而不必定义包装函数。

lambda是处理高阶函数的非常重要的抽象机制的一部分。为了正确理解它的价值,请观看Abelson和Sussman的高质量课程,并阅读《SICP》一书

这些都是与现代软件业务相关的问题,并且变得越来越流行。

Lambda是一个过程构造函数。你可以在运行时合成程序,尽管Python的lambda不是很强大。请注意,很少有人理解这种编程。

使用lambdas的一个有用的例子是提高长列表推导式的可读性。 在这个例子中,loop_dic是为了清晰起见的缩写,但是假设loop_dic非常长。如果你只是使用一个包含i的普通值,而不是该值的lambda版本,你会得到一个NameError。

>>> lis = [{"name": "Peter"}, {"name": "Josef"}]

>>> loop_dic = lambda i: {"name": i["name"] + " Wallace" }
>>> new_lis = [loop_dic(i) for i in lis]

>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]

而不是

>>> lis = [{"name": "Peter"}, {"name": "Josef"}]

>>> new_lis = [{"name": i["name"] + " Wallace"} for i in lis]

>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]