我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?

我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?

这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。


当前回答

你说的是lambda表达式吗?就像

lambda x: x**2 + 2*x - 5

这些东西其实很有用。Python支持一种称为函数式编程的编程风格,在这种编程风格中,您可以将函数传递给其他函数来执行某些操作。例子:

mult3 = filter(lambda x: x % 3 == 0, [1, 2, 3, 4, 5, 6, 7, 8, 9])

将mult3设置为[3,6,9],即原始列表中3的倍数的元素。这句话更短(有人可能会说,更清楚)

def filterfunc(x):
    return x % 3 == 0
mult3 = filter(filterfunc, [1, 2, 3, 4, 5, 6, 7, 8, 9])

当然,在这个特殊的情况下,你可以做同样的事情作为一个列表推导:

mult3 = [x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9] if x % 3 == 0]

(甚至作为range(3,10,3)),但还有许多其他更复杂的用例,在这些用例中,您不能使用列表推导式,lambda函数可能是写出一些东西的最短方法。

Returning a function from another function >>> def transform(n): ... return lambda x: x + n ... >>> f = transform(3) >>> f(4) 7 This is often used to create function wrappers, such as Python's decorators. Combining elements of an iterable sequence with reduce() >>> reduce(lambda a, b: '{}, {}'.format(a, b), [1, 2, 3, 4, 5, 6, 7, 8, 9]) '1, 2, 3, 4, 5, 6, 7, 8, 9' Sorting by an alternate key >>> sorted([1, 2, 3, 4, 5, 6, 7, 8, 9], key=lambda x: abs(5-x)) [5, 4, 6, 3, 7, 2, 8, 1, 9]

我经常使用lambda函数。我花了一段时间来适应它们,但最终我明白了它们是语言中非常有价值的一部分。

其他回答

你说的是lambda表达式吗?就像

lambda x: x**2 + 2*x - 5

这些东西其实很有用。Python支持一种称为函数式编程的编程风格,在这种编程风格中,您可以将函数传递给其他函数来执行某些操作。例子:

mult3 = filter(lambda x: x % 3 == 0, [1, 2, 3, 4, 5, 6, 7, 8, 9])

将mult3设置为[3,6,9],即原始列表中3的倍数的元素。这句话更短(有人可能会说,更清楚)

def filterfunc(x):
    return x % 3 == 0
mult3 = filter(filterfunc, [1, 2, 3, 4, 5, 6, 7, 8, 9])

当然,在这个特殊的情况下,你可以做同样的事情作为一个列表推导:

mult3 = [x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9] if x % 3 == 0]

(甚至作为range(3,10,3)),但还有许多其他更复杂的用例,在这些用例中,您不能使用列表推导式,lambda函数可能是写出一些东西的最短方法。

Returning a function from another function >>> def transform(n): ... return lambda x: x + n ... >>> f = transform(3) >>> f(4) 7 This is often used to create function wrappers, such as Python's decorators. Combining elements of an iterable sequence with reduce() >>> reduce(lambda a, b: '{}, {}'.format(a, b), [1, 2, 3, 4, 5, 6, 7, 8, 9]) '1, 2, 3, 4, 5, 6, 7, 8, 9' Sorting by an alternate key >>> sorted([1, 2, 3, 4, 5, 6, 7, 8, 9], key=lambda x: abs(5-x)) [5, 4, 6, 3, 7, 2, 8, 1, 9]

我经常使用lambda函数。我花了一段时间来适应它们,但最终我明白了它们是语言中非常有价值的一部分。

首先恭喜你算出了。在我看来,这是一个非常强大的构念。如今函数式编程语言的发展趋势无疑表明,在不久的将来,它既不应该被避免,也不会被重新定义。

你只需要换个角度思考。我相信你很快就会爱上它的。但是如果你只和python打交道要小心。因为lambda不是一个真正的闭包,它以某种方式“坏了”:python的lambda坏了

我使用lambda来创建包含参数的回调。在一行中编写lambda比编写一个方法来执行相同的功能更简洁。

例如:

import imported.module

def func():
    return lambda: imported.module.method("foo", "bar")

相对于:

import imported.module

def func():
    def cb():
        return imported.module.method("foo", "bar")
    return cb

使用lambdas的一个有用的例子是提高长列表推导式的可读性。 在这个例子中,loop_dic是为了清晰起见的缩写,但是假设loop_dic非常长。如果你只是使用一个包含i的普通值,而不是该值的lambda版本,你会得到一个NameError。

>>> lis = [{"name": "Peter"}, {"name": "Josef"}]

>>> loop_dic = lambda i: {"name": i["name"] + " Wallace" }
>>> new_lis = [loop_dic(i) for i in lis]

>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]

而不是

>>> lis = [{"name": "Peter"}, {"name": "Josef"}]

>>> new_lis = [{"name": i["name"] + " Wallace"} for i in lis]

>>> new_lis
[{'name': 'Peter Wallace'}, {'name': 'Josef Wallace'}]

Lambdas通常与函数式编程风格密切相关。通过将函数应用于某些数据并合并结果来解决问题,这是谷歌用于实现其大多数算法的思想。

以函数式编程风格编写的程序很容易并行化,因此在现代多核机器中变得越来越重要。 所以简而言之,不,你不应该忘记他们。