我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
我在试着找出Python的lambda。lambda是那些在现实生活中应该被遗忘的“有趣”语言项之一吗?
我确信有一些边缘情况可能需要它,但是考虑到它的模糊性,它在未来版本中被重新定义的可能性(我基于它的各种定义的假设)以及降低的编码清晰度——应该避免它吗?
这让我想起了C类型的溢出(缓冲区溢出)——指向顶部变量并重载以设置其他字段值。这感觉有点像技术人员的表演,但维护程序员的噩梦。
当前回答
我发现lambda对于执行相同功能的函数列表很有用,但适用于不同的情况。
就像Mozilla的复数规则:
plural_rules = [
lambda n: 'all',
lambda n: 'singular' if n == 1 else 'plural',
lambda n: 'singular' if 0 <= n <= 1 else 'plural',
...
]
# Call plural rule #1 with argument 4 to find out which sentence form to use.
plural_rule[1](4) # returns 'plural'
如果你必须为所有这些定义一个函数,到最后你会疯掉的。 另外,像plural_rule_1, plural_rule_2这样的函数名也不太好。当你依赖于变量函数id时,你需要eval()它。
其他回答
我经常使用它,主要是作为空对象或将参数部分绑定到函数。
下面是一些例子:
实现空对象模式:
{
DATA_PACKET: self.handle_data_packets
NET_PACKET: self.handle_hardware_packets
}.get(packet_type, lambda x : None)(payload)
对于参数绑定:
假设我有以下API
def dump_hex(file, var)
# some code
pass
class X(object):
#...
def packet_received(data):
# some kind of preprocessing
self.callback(data)
#...
然后,当我不想快速转储接收到的数据到一个文件,我这样做:
dump_file = file('hex_dump.txt','w')
X.callback = lambda (x): dump_hex(dump_file, x)
...
dump_file.close()
Lambdas通常与函数式编程风格密切相关。通过将函数应用于某些数据并合并结果来解决问题,这是谷歌用于实现其大多数算法的思想。
以函数式编程风格编写的程序很容易并行化,因此在现代多核机器中变得越来越重要。 所以简而言之,不,你不应该忘记他们。
我不能说python对lambda的具体实现,但一般来说lambda函数真的很方便。它们是函数式编程的核心技术(甚至是技术),在面向对象程序中也非常有用。对于某些类型的问题,它们是最好的解决方案,所以当然不应该忘记!
我建议你仔细阅读闭包和map函数(它链接到python文档,但它存在于几乎所有支持函数结构的语言中),看看它为什么有用。
首先恭喜你算出了。在我看来,这是一个非常强大的构念。如今函数式编程语言的发展趋势无疑表明,在不久的将来,它既不应该被避免,也不会被重新定义。
你只需要换个角度思考。我相信你很快就会爱上它的。但是如果你只和python打交道要小心。因为lambda不是一个真正的闭包,它以某种方式“坏了”:python的lambda坏了
Lambdas实际上是非常强大的构造,它源于函数式编程的思想,而且在Python的近期内,它绝不可能被轻易地修改、重新定义或删除。它们可以帮助您编写更强大的代码,因为它允许您将函数作为参数传递,因此函数是一等公民。
Lambdas确实容易让人困惑,但一旦获得了扎实的理解,你就可以写出像这样干净优雅的代码:
squared = map(lambda x: x*x, [1, 2, 3, 4, 5])
上面的代码行返回列表中数字的平方的列表。当然,你也可以这样做:
def square(x):
return x*x
squared = map(square, [1, 2, 3, 4, 5])
显然,前一种代码更短,如果您打算只在一个地方使用map函数(或任何以函数作为参数的类似函数),则尤其如此。这也使代码更加直观和优雅。
另外,正如@David Zaslavsky在他的回答中提到的,列表推导并不总是正确的方法,尤其是当你的列表必须从一些晦涩的数学方法中获取值时。
从更实际的角度来看,lambdas最近对我来说最大的优势之一是在GUI和事件驱动编程方面。如果你看一下Tkinter中的回调,它们所接受的参数就是触发它们的事件。如。
def define_bindings(widget):
widget.bind("<Button-1>", do-something-cool)
def do-something-cool(event):
#Your code to execute on the event trigger
现在如果你有一些论点要通过呢?简单到传递2个参数来存储鼠标单击的坐标。你可以简单地这样做:
def main():
# define widgets and other imp stuff
x, y = None, None
widget.bind("<Button-1>", lambda event: do-something-cool(x, y))
def do-something-cool(event, x, y):
x = event.x
y = event.y
#Do other cool stuff
现在,您可以争辩说这可以使用全局变量来完成,但是,如果全局变量只用于一个特定的位置,您真的想要担心内存管理和泄漏吗?那只是糟糕的编程风格。
简而言之,lambdas是很棒的,永远不应该被低估。尽管Python lambdas与LISP lambdas不同(后者更强大),但您确实可以用它们做很多神奇的事情。