我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

我们可以用比特的概念来做这个。假设我们有一个字符串“abc”,我们想要所有长度为2的元素的组合(即“ab”,“ac”,“bc”)。

我们可以在1到2^n(排他性)的数字中找到集合位。这里是1到7,只要我们设置了bits = 2,我们就可以从string中输出相应的值。

例如:

1 - 001 二零零一 3011 ->印刷ab (str[0], str[1]) 四到一百。 5 - 101 ->打印ac (str[0], str[2]) 6 - 110 ->印刷ab (str[1], str[2]) 7 - 111。

代码示例:

public class StringCombinationK {   
    static void combk(String s , int k){
        int n = s.length();
        int num = 1<<n;
        int j=0;
        int count=0;

        for(int i=0;i<num;i++){
            if (countSet(i)==k){
                setBits(i,j,s);
                count++;
                System.out.println();
            }
        }

        System.out.println(count);
    }

    static void setBits(int i,int j,String s){ // print the corresponding string value,j represent the index of set bit
        if(i==0){
            return;
        }

        if(i%2==1){
            System.out.print(s.charAt(j));                  
        }

        setBits(i/2,j+1,s);
    }

    static int countSet(int i){ //count number of set bits
        if( i==0){
            return 0;
        }

        return (i%2==0? 0:1) + countSet(i/2);
    }

    public static void main(String[] arhs){
        String s = "abcdefgh";
        int k=3;
        combk(s,k);
    }
}

其他回答

说了这么多,做了这么多,这就是奥卡姆的代码。 算法是显而易见的代码..

let combi n lst =
    let rec comb l c =
        if( List.length c = n) then [c] else
        match l with
        [] -> []
        | (h::t) -> (combi t (h::c))@(combi t c)
    in
        combi lst []
;;

另一种python递归解决方案。

def combination_indicies(n, k, j = 0, stack = []):   
    if len(stack) == k:            
        yield list(stack)
        return
        
    for i in range(j, n):
        stack.append(i)
        for x in combination_indicies(n, k, i + 1, stack):            
            yield x
        stack.pop()  
        
list(combination_indicies(5, 3))

输出:

[[0, 1, 2],
 [0, 1, 3],
 [0, 1, 4],
 [0, 2, 3],
 [0, 2, 4],
 [0, 3, 4],
 [1, 2, 3],
 [1, 2, 4],
 [1, 3, 4],
 [2, 3, 4]]

Clojure版本:

(defn comb [k l]
  (if (= 1 k) (map vector l)
      (apply concat
             (map-indexed
              #(map (fn [x] (conj x %2))
                    (comb (dec k) (drop (inc %1) l)))
              l))))

另一个具有组合索引惰性生成的c#版本。这个版本维护了一个索引数组来定义所有值列表和当前组合值之间的映射,即在整个运行时不断使用O(k)额外的空间。该代码在O(k)时间内生成单个组合,包括第一个组合。

public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
    if (k < 0 || values.Length < k)
        yield break; // invalid parameters, no combinations possible

    // generate the initial combination indices
    var combIndices = new int[k];
    for (var i = 0; i < k; i++)
    {
        combIndices[i] = i;
    }

    while (true)
    {
        // return next combination
        var combination = new T[k];
        for (var i = 0; i < k; i++)
        {
            combination[i] = values[combIndices[i]];
        }
        yield return combination;

        // find first index to update
        var indexToUpdate = k - 1;
        while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
        {
            indexToUpdate--;
        }

        if (indexToUpdate < 0)
            yield break; // done

        // update combination indices
        for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
        {
            combIndices[indexToUpdate] = combIndex;
        }
    }
}

测试代码:

foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
    System.Console.WriteLine(String.Join(" ", combination));
}

输出:

a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e

《计算机编程艺术,卷4A:组合算法,第1部分》第7.2.1.3节中算法L(字典组合)的C代码:

#include <stdio.h>
#include <stdlib.h>

void visit(int* c, int t) 
{
  // for (int j = 1; j <= t; j++)
  for (int j = t; j > 0; j--)
    printf("%d ", c[j]);
  printf("\n");
}

int* initialize(int n, int t) 
{
  // c[0] not used
  int *c = (int*) malloc((t + 3) * sizeof(int));

  for (int j = 1; j <= t; j++)
    c[j] = j - 1;
  c[t+1] = n;
  c[t+2] = 0;
  return c;
}

void comb(int n, int t) 
{
  int *c = initialize(n, t);
  int j;

  for (;;) {
    visit(c, t);
    j = 1;
    while (c[j]+1 == c[j+1]) {
      c[j] = j - 1;
      ++j;
    }
    if (j > t) 
      return;
    ++c[j];
  }
  free(c);
}

int main(int argc, char *argv[])
{
  comb(5, 3);
  return 0;
}