我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

用c#的另一个解决方案:

 static List<List<T>> GetCombinations<T>(List<T> originalItems, int combinationLength)
    {
        if (combinationLength < 1)
        {
            return null;
        }

        return CreateCombinations<T>(new List<T>(), 0, combinationLength, originalItems);
    }

 static List<List<T>> CreateCombinations<T>(List<T> initialCombination, int startIndex, int length, List<T> originalItems)
    {
        List<List<T>> combinations = new List<List<T>>();
        for (int i = startIndex; i < originalItems.Count - length + 1; i++)
        {
            List<T> newCombination = new List<T>(initialCombination);
            newCombination.Add(originalItems[i]);
            if (length > 1)
            {
                List<List<T>> newCombinations = CreateCombinations(newCombination, i + 1, length - 1, originalItems);
                combinations.AddRange(newCombinations);
            }
            else
            {
                combinations.Add(newCombination);
            }
        }

        return combinations;
    }

用法示例:

   List<char> initialArray = new List<char>() { 'a','b','c','d'};
   int combinationLength = 3;
   List<List<char>> combinations = GetCombinations(initialArray, combinationLength);

其他回答

我有一个用于project euler的排列算法,用python编写:

def missing(miss,src):
    "Returns the list of items in src not present in miss"
    return [i for i in src if i not in miss]


def permutation_gen(n,l):
    "Generates all the permutations of n items of the l list"
    for i in l:
        if n<=1: yield [i]
        r = [i]
        for j in permutation_gen(n-1,missing([i],l)):  yield r+j

If

n<len(l) 

你应该有所有你需要的组合,没有重复,你需要吗?

它是一个生成器,所以你可以这样使用它:

for comb in permutation_gen(3,list("ABCDEFGH")):
    print comb 

下面是一个方法,它从一个随机长度的字符串中给出指定大小的所有组合。类似于昆玛斯的解,但适用于不同的输入和k。

代码可以更改为换行,即'dab'从输入'abcd' w k=3。

public void run(String data, int howMany){
    choose(data, howMany, new StringBuffer(), 0);
}


//n choose k
private void choose(String data, int k, StringBuffer result, int startIndex){
    if (result.length()==k){
        System.out.println(result.toString());
        return;
    }

    for (int i=startIndex; i<data.length(); i++){
        result.append(data.charAt(i));
        choose(data,k,result, i+1);
        result.setLength(result.length()-1);
    }
}

"abcde"的输出:

ABC abd ace ade BCD bce bde cde

void combine(char a[], int N, int M, int m, int start, char result[]) {
    if (0 == m) {
        for (int i = M - 1; i >= 0; i--)
            std::cout << result[i];
        std::cout << std::endl;
        return;
    }
    for (int i = start; i < (N - m + 1); i++) {
        result[m - 1] = a[i];
        combine(a, N, M, m-1, i+1, result);
    }
}

void combine(char a[], int N, int M) {
    char *result = new char[M];
    combine(a, N, M, M, 0, result);
    delete[] result;
}

在第一个函数中,m表示还需要选择多少个,start表示必须从数组中的哪个位置开始选择。

#include <stdio.h>

unsigned int next_combination(unsigned int *ar, size_t n, unsigned int k)
{
    unsigned int finished = 0;
    unsigned int changed = 0;
    unsigned int i;

    if (k > 0) {
        for (i = k - 1; !finished && !changed; i--) {
            if (ar[i] < (n - 1) - (k - 1) + i) {
                /* Increment this element */
                ar[i]++;
                if (i < k - 1) {
                    /* Turn the elements after it into a linear sequence */
                    unsigned int j;
                    for (j = i + 1; j < k; j++) {
                        ar[j] = ar[j - 1] + 1;
                    }
                }
                changed = 1;
            }
            finished = i == 0;
        }
        if (!changed) {
            /* Reset to first combination */
            for (i = 0; i < k; i++) {
                ar[i] = i;
            }
        }
    }
    return changed;
}

typedef void(*printfn)(const void *, FILE *);

void print_set(const unsigned int *ar, size_t len, const void **elements,
    const char *brackets, printfn print, FILE *fptr)
{
    unsigned int i;
    fputc(brackets[0], fptr);
    for (i = 0; i < len; i++) {
        print(elements[ar[i]], fptr);
        if (i < len - 1) {
            fputs(", ", fptr);
        }
    }
    fputc(brackets[1], fptr);
}

int main(void)
{
    unsigned int numbers[] = { 0, 1, 2 };
    char *elements[] = { "a", "b", "c", "d", "e" };
    const unsigned int k = sizeof(numbers) / sizeof(unsigned int);
    const unsigned int n = sizeof(elements) / sizeof(const char*);

    do {
        print_set(numbers, k, (void*)elements, "[]", (printfn)fputs, stdout);
        putchar('\n');
    } while (next_combination(numbers, n, k));
    getchar();
    return 0;
}

由于没有提到编程语言,我假设列表也是可以的。下面是一个OCaml版本,适用于短列表(非尾递归)。给定一个包含任意类型元素的列表l和一个整数n,如果我们假设结果列表中元素的顺序被忽略,它将返回一个包含l的n个元素的所有可能列表的列表,即list ['a';'b']与['b';'a']相同,并且将报告一次。因此,结果列表的大小将是((list。长度l)选择n)。

递归的直观原理如下:取列表的头,然后进行两次递归调用:

递归调用1 (RC1):到列表的尾部,但选择n-1个元素 递归调用2 (RC2):到列表的尾部,但选择n个元素

要组合递归结果,list-乘(请使用奇数名称)列表的头部与RC1的结果,然后附加(@)RC2的结果。List-multiply是如下操作lmul:

a lmul [ l1 ; l2 ; l3] = [a::l1 ; a::l2 ; a::l3]

Lmul在下面的代码中实现

List.map (fun x -> h::x)

当列表的大小等于您想要选择的元素数量时,递归将终止,在这种情况下,您只需返回列表本身。

下面是OCaml中实现上述算法的四行代码:

    let rec choose l n = match l, (List.length l) with                                 
    | _, lsize  when n==lsize  -> [l]                                
    | h::t, _ -> (List.map (fun x-> h::x) (choose t (n-1))) @ (choose t n)   
    | [], _ -> []