我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

下面是我最近用Java写的一段代码,它计算并返回从“outOf”元素中“num”元素的所有组合。

// author: Sourabh Bhat (heySourabh@gmail.com)

public class Testing
{
    public static void main(String[] args)
    {

// Test case num = 5, outOf = 8.

        int num = 5;
        int outOf = 8;
        int[][] combinations = getCombinations(num, outOf);
        for (int i = 0; i < combinations.length; i++)
        {
            for (int j = 0; j < combinations[i].length; j++)
            {
                System.out.print(combinations[i][j] + " ");
            }
            System.out.println();
        }
    }

    private static int[][] getCombinations(int num, int outOf)
    {
        int possibilities = get_nCr(outOf, num);
        int[][] combinations = new int[possibilities][num];
        int arrayPointer = 0;

        int[] counter = new int[num];

        for (int i = 0; i < num; i++)
        {
            counter[i] = i;
        }
        breakLoop: while (true)
        {
            // Initializing part
            for (int i = 1; i < num; i++)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i] = counter[i - 1] + 1;
            }

            // Testing part
            for (int i = 0; i < num; i++)
            {
                if (counter[i] < outOf)
                {
                    continue;
                } else
                {
                    break breakLoop;
                }
            }

            // Innermost part
            combinations[arrayPointer] = counter.clone();
            arrayPointer++;

            // Incrementing part
            counter[num - 1]++;
            for (int i = num - 1; i >= 1; i--)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i - 1]++;
            }
        }

        return combinations;
    }

    private static int get_nCr(int n, int r)
    {
        if(r > n)
        {
            throw new ArithmeticException("r is greater then n");
        }
        long numerator = 1;
        long denominator = 1;
        for (int i = n; i >= r + 1; i--)
        {
            numerator *= i;
        }
        for (int i = 2; i <= n - r; i++)
        {
            denominator *= i;
        }

        return (int) (numerator / denominator);
    }
}

其他回答

这是我对javascript的贡献(没有递归)

set = ["q0", "q1", "q2", "q3"]
collector = []


function comb(num) {
  results = []
  one_comb = []
  for (i = set.length - 1; i >= 0; --i) {
    tmp = Math.pow(2, i)
    quotient = parseInt(num / tmp)
    results.push(quotient)
    num = num % tmp
  }
  k = 0
  for (i = 0; i < results.length; ++i)
    if (results[i]) {
      ++k
      one_comb.push(set[i])
    }
  if (collector[k] == undefined)
    collector[k] = []
  collector[k].push(one_comb)
}


sum = 0
for (i = 0; i < set.length; ++i)
  sum += Math.pow(2, i)
 for (ii = sum; ii > 0; --ii)
  comb(ii)
 cnt = 0
for (i = 1; i < collector.length; ++i) {
  n = 0
  for (j = 0; j < collector[i].length; ++j)
    document.write(++cnt, " - " + (++n) + " - ", collector[i][j], "<br>")
  document.write("<hr>")
}   

简短快速的c#实现

public static IEnumerable<IEnumerable<T>> Combinations<T>(IEnumerable<T> elements, int k)
{
    return Combinations(elements.Count(), k).Select(p => p.Select(q => elements.ElementAt(q)));                
}      

public static List<int[]> Combinations(int setLenght, int subSetLenght) //5, 3
{
    var result = new List<int[]>();

    var lastIndex = subSetLenght - 1;
    var dif = setLenght - subSetLenght;
    var prevSubSet = new int[subSetLenght];
    var lastSubSet = new int[subSetLenght];
    for (int i = 0; i < subSetLenght; i++)
    {
        prevSubSet[i] = i;
        lastSubSet[i] = i + dif;
    }

    while(true)
    {
        //add subSet ad result set
        var n = new int[subSetLenght];
        for (int i = 0; i < subSetLenght; i++)
            n[i] = prevSubSet[i];

        result.Add(n);

        if (prevSubSet[0] >= lastSubSet[0])
            break;

        //start at index 1 because index 0 is checked and breaking in the current loop
        int j = 1;
        for (; j < subSetLenght; j++)
        {
            if (prevSubSet[j] >= lastSubSet[j])
            {
                prevSubSet[j - 1]++;

                for (int p = j; p < subSetLenght; p++)
                    prevSubSet[p] = prevSubSet[p - 1] + 1;

                break;
            }
        }

        if (j > lastIndex)
            prevSubSet[lastIndex]++;
    }

    return result;
}

Here's some simple code that prints all the C(n,m) combinations. It works by initializing and moving a set of array indices that point to next valid combination. The indices are initialized to point to the lowest m indices (lexicographically the smallest combination). Then on, starting with the m-th index, we try to move the indices forward. if an index has reached its limit, we try the previous index (all the way down to index 1). If we can move an index forward, then we reset all greater indices.

m=(rand()%n)+1; // m will vary from 1 to n

for (i=0;i<n;i++) a[i]=i+1;

// we want to print all possible C(n,m) combinations of selecting m objects out of n
printf("Printing C(%d,%d) possible combinations ...\n", n,m);

// This is an adhoc algo that keeps m pointers to the next valid combination
for (i=0;i<m;i++) p[i]=i; // the p[.] contain indices to the a vector whose elements constitute next combination

done=false;
while (!done)
{
    // print combination
    for (i=0;i<m;i++) printf("%2d ", a[p[i]]);
    printf("\n");

    // update combination
    // method: start with p[m-1]. try to increment it. if it is already at the end, then try moving p[m-2] ahead.
    // if this is possible, then reset p[m-1] to 1 more than (the new) p[m-2].
    // if p[m-2] can not also be moved, then try p[m-3]. move that ahead. then reset p[m-2] and p[m-1].
    // repeat all the way down to p[0]. if p[0] can not also be moved, then we have generated all combinations.
    j=m-1;
    i=1;
    move_found=false;
    while ((j>=0) && !move_found)
    {
        if (p[j]<(n-i)) 
        {
            move_found=true;
            p[j]++; // point p[j] to next index
            for (k=j+1;k<m;k++)
            {
                p[k]=p[j]+(k-j);
            }
        }
        else
        {
            j--;
            i++;
        }
    }
    if (!move_found) done=true;
}

我们可以用比特的概念来做这个。假设我们有一个字符串“abc”,我们想要所有长度为2的元素的组合(即“ab”,“ac”,“bc”)。

我们可以在1到2^n(排他性)的数字中找到集合位。这里是1到7,只要我们设置了bits = 2,我们就可以从string中输出相应的值。

例如:

1 - 001 二零零一 3011 ->印刷ab (str[0], str[1]) 四到一百。 5 - 101 ->打印ac (str[0], str[2]) 6 - 110 ->印刷ab (str[1], str[2]) 7 - 111。

代码示例:

public class StringCombinationK {   
    static void combk(String s , int k){
        int n = s.length();
        int num = 1<<n;
        int j=0;
        int count=0;

        for(int i=0;i<num;i++){
            if (countSet(i)==k){
                setBits(i,j,s);
                count++;
                System.out.println();
            }
        }

        System.out.println(count);
    }

    static void setBits(int i,int j,String s){ // print the corresponding string value,j represent the index of set bit
        if(i==0){
            return;
        }

        if(i%2==1){
            System.out.print(s.charAt(j));                  
        }

        setBits(i/2,j+1,s);
    }

    static int countSet(int i){ //count number of set bits
        if( i==0){
            return 0;
        }

        return (i%2==0? 0:1) + countSet(i/2);
    }

    public static void main(String[] arhs){
        String s = "abcdefgh";
        int k=3;
        combk(s,k);
    }
}

这是一个优雅的Scala通用实现,如99个Scala问题所述。

object P26 {
  def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] = 
    ls match {
      case Nil => Nil
      case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f)
    }

  def combinations[A](n: Int, ls: List[A]): List[List[A]] =
    if (n == 0) List(Nil)
    else flatMapSublists(ls) { sl =>
      combinations(n - 1, sl.tail) map {sl.head :: _}
    }
}