我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。
假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:
8! / ((8 - 3)! * 3!) = 56
数组(或单词),每个数组由3个字母组成。
当前回答
简单但缓慢的c++回溯算法。
#include <iostream>
void backtrack(int* numbers, int n, int k, int i, int s)
{
if (i == k)
{
for (int j = 0; j < k; ++j)
{
std::cout << numbers[j];
}
std::cout << std::endl;
return;
}
if (s > n)
{
return;
}
numbers[i] = s;
backtrack(numbers, n, k, i + 1, s + 1);
backtrack(numbers, n, k, i, s + 1);
}
int main(int argc, char* argv[])
{
int n = 5;
int k = 3;
int* numbers = new int[k];
backtrack(numbers, n, k, 0, 1);
delete[] numbers;
return 0;
}
其他回答
我的实现在c/c++
#include <unistd.h>
#include <stdio.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
int main(int argc, char **argv)
{
int opt = -1, min_len = 0, max_len = 0;
char ofile[256], fchar[2], tchar[2];
ofile[0] = 0;
fchar[0] = 0;
tchar[0] = 0;
while((opt = getopt(argc, argv, "o:f:t:l:L:")) != -1)
{
switch(opt)
{
case 'o':
strncpy(ofile, optarg, 255);
break;
case 'f':
strncpy(fchar, optarg, 1);
break;
case 't':
strncpy(tchar, optarg, 1);
break;
case 'l':
min_len = atoi(optarg);
break;
case 'L':
max_len = atoi(optarg);
break;
default:
printf("usage: %s -oftlL\n\t-o output file\n\t-f from char\n\t-t to char\n\t-l min seq len\n\t-L max seq len", argv[0]);
}
}
if(max_len < 1)
{
printf("error, length must be more than 0\n");
return 1;
}
if(min_len > max_len)
{
printf("error, max length must be greater or equal min_length\n");
return 1;
}
if((int)fchar[0] > (int)tchar[0])
{
printf("error, invalid range specified\n");
return 1;
}
FILE *out = fopen(ofile, "w");
if(!out)
{
printf("failed to open input file with error: %s\n", strerror(errno));
return 1;
}
int cur_len = min_len;
while(cur_len <= max_len)
{
char buf[cur_len];
for(int i = 0; i < cur_len; i++)
buf[i] = fchar[0];
fwrite(buf, cur_len, 1, out);
fwrite("\n", 1, 1, out);
while(buf[0] != (tchar[0]+1))
{
while(buf[cur_len-1] < tchar[0])
{
(int)buf[cur_len-1]++;
fwrite(buf, cur_len, 1, out);
fwrite("\n", 1, 1, out);
}
if(cur_len < 2)
break;
if(buf[0] == tchar[0])
{
bool stop = true;
for(int i = 1; i < cur_len; i++)
{
if(buf[i] != tchar[0])
{
stop = false;
break;
}
}
if(stop)
break;
}
int u = cur_len-2;
for(; u>=0 && buf[u] >= tchar[0]; u--)
;
(int)buf[u]++;
for(int i = u+1; i < cur_len; i++)
buf[i] = fchar[0];
fwrite(buf, cur_len, 1, out);
fwrite("\n", 1, 1, out);
}
cur_len++;
}
fclose(out);
return 0;
}
这里我的实现在c++,它写所有的组合到指定的文件,但行为可以改变,我在生成各种字典,它接受最小和最大长度和字符范围,目前只有ANSI支持,它足以满足我的需求
下面是一个方法,它从一个随机长度的字符串中给出指定大小的所有组合。类似于昆玛斯的解,但适用于不同的输入和k。
代码可以更改为换行,即'dab'从输入'abcd' w k=3。
public void run(String data, int howMany){
choose(data, howMany, new StringBuffer(), 0);
}
//n choose k
private void choose(String data, int k, StringBuffer result, int startIndex){
if (result.length()==k){
System.out.println(result.toString());
return;
}
for (int i=startIndex; i<data.length(); i++){
result.append(data.charAt(i));
choose(data,k,result, i+1);
result.setLength(result.length()-1);
}
}
"abcde"的输出:
ABC abd ace ade BCD bce bde cde
我想提出我的解决方案。在next中没有递归调用,也没有嵌套循环。 代码的核心是next()方法。
public class Combinations {
final int pos[];
final List<Object> set;
public Combinations(List<?> l, int k) {
pos = new int[k];
set=new ArrayList<Object>(l);
reset();
}
public void reset() {
for (int i=0; i < pos.length; ++i) pos[i]=i;
}
public boolean next() {
int i = pos.length-1;
for (int maxpos = set.size()-1; pos[i] >= maxpos; --maxpos) {
if (i==0) return false;
--i;
}
++pos[i];
while (++i < pos.length)
pos[i]=pos[i-1]+1;
return true;
}
public void getSelection(List<?> l) {
@SuppressWarnings("unchecked")
List<Object> ll = (List<Object>)l;
if (ll.size()!=pos.length) {
ll.clear();
for (int i=0; i < pos.length; ++i)
ll.add(set.get(pos[i]));
}
else {
for (int i=0; i < pos.length; ++i)
ll.set(i, set.get(pos[i]));
}
}
}
用法示例:
static void main(String[] args) {
List<Character> l = new ArrayList<Character>();
for (int i=0; i < 32; ++i) l.add((char)('a'+i));
Combinations comb = new Combinations(l,5);
int n=0;
do {
++n;
comb.getSelection(l);
//Log.debug("%d: %s", n, l.toString());
} while (comb.next());
Log.debug("num = %d", n);
}
下面是我的JavaScript解决方案,通过使用reduce/map,它消除了几乎所有变量,功能更强大
function combinations(arr, size) { var len = arr.length; if (size > len) return []; if (!size) return [[]]; if (size == len) return [arr]; return arr.reduce(function (acc, val, i) { var res = combinations(arr.slice(i + 1), size - 1) .map(function (comb) { return [val].concat(comb); }); return acc.concat(res); }, []); } var combs = combinations([1,2,3,4,5,6,7,8],3); combs.map(function (comb) { document.body.innerHTML += comb.toString() + '<br />'; }); document.body.innerHTML += '<br /> Total combinations = ' + combs.length;
算法:
从1数到2^n。 将每个数字转换为二进制表示。 根据位置,将每个“on”位转换为集合中的元素。
在c#中:
void Main()
{
var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };
var kElement = 2;
for(var i = 1; i < Math.Pow(2, set.Length); i++) {
var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
var cnt = Regex.Matches(Regex.Escape(result), "1").Count;
if (cnt == kElement) {
for(int j = 0; j < set.Length; j++)
if ( Char.GetNumericValue(result[j]) == 1)
Console.Write(set[j]);
Console.WriteLine();
}
}
}
为什么它能起作用?
在n元素集的子集和n位序列之间存在双射。
这意味着我们可以通过数数序列来计算出有多少个子集。
例如,下面的四个元素集可以用{0,1}X {0,1} X {0,1} X{0,1}(或2^4)个不同的序列表示。
我们要做的就是从1数到2^n来找到所有的组合。(我们忽略空集。)接下来,将数字转换为二进制表示。然后将集合中的元素替换为“on”位。
如果只需要k个元素的结果,则只在k位为“on”时打印。
(如果你想要所有的子集,而不是k长度的子集,删除cnt/kElement部分。)
(有关证明,请参阅麻省理工学院免费课件计算机科学数学,雷曼等,第11.2.2节。https://ocw.mit.edu/courses/electrical -工程-和-计算机- science/6 - 042 j -数学- -计算机科学-下降- 2010/readings/)