我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
我自己也遇到过几次这样的问题。几乎每次,原因都是我试图打开的文件一开始就不是一个正确保存的CSV。这里的“适当”是指每一行都有相同数量的分隔符或列。
通常发生这种情况是因为我在Excel中打开了CSV,然后不恰当地保存了它。尽管文件扩展名仍然是. CSV,但纯CSV格式已经被改变了。
任何以pandas to_csv保存的文件都将被正确格式化,不应该有这个问题。但如果你用另一个程序打开它,它可能会改变结构。
希望这能有所帮助。
其他回答
这可能是个问题
数据中的分隔符 第一行,正如@TomAugspurger所指出的
要解决这个问题,请在调用read_csv时尝试指定sep和/或头参数。例如,
df = pandas.read_csv(filepath, sep='delimiter', header=None)
在上面的代码中,sep定义了您的分隔符和header=None,告诉pandas您的源数据没有作为标题/列标题的行。因此,文档说:“如果文件不包含标题行,那么你应该显式地传递header=None”。在这种情况下,pandas会自动为每个字段{0,1,2,…}创建整数索引。
根据文档,分隔符应该不是问题。文档中说“如果sep为None[未指定],将尝试自动确定此值。”然而,我在这方面运气不太好,包括带有明显分隔符的实例。
另一种解决方案可能是尝试自动检测分隔符
# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')
# remember to go back to the start of the file for the next time it's read
csv_file.seek(0)
df = pd.read_csv(csv_file, sep=dialect.delimiter)
你可以这样做,以避免问题-
train = pd.read_csv('/home/Project/output.csv' , header=None)
just add - header=None
希望这能有所帮助!!
检查是否使用正确的分隔符加载csv。
df = pd.read_csv(csvname, header=0, sep=",")
解决方法简单:在excel中打开csv文件,并保存为csv格式的不同名称文件。再次尝试导入它spyder,你的问题将得到解决!
我有同样的问题,当read_csv: ParserError:错误标记数据。 我只是把旧的csv文件保存为一个新的csv文件。问题解决了!