在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

我发现Ken Williams上面的帖子很棒,我添加了几行来解释NA值,并使其成为一个函数。

Mode <- function(x, na.rm = FALSE) {
  if(na.rm){
    x = x[!is.na(x)]
  }

  ux <- unique(x)
  return(ux[which.max(tabulate(match(x, ux)))])
}

其他回答

计算包含离散值的向量“v”的MODE的一个简单方法是:

names(sort(table(v)))[length(sort(table(v)))]

这里有另一个解决方案:

freq <- tapply(mySamples,mySamples,length)
#or freq <- table(mySamples)
as.numeric(names(freq)[which.max(freq)])

在r邮件列表中发现了这个,希望对你有帮助。我也是这么想的。您将希望table()数据,排序,然后选择第一个名称。这有点粗俗,但应该有用。

names(sort(-table(x)))[1]

下面是一个查找模式的函数:

mode <- function(x) {
  unique_val <- unique(x)
  counts <- vector()
  for (i in 1:length(unique_val)) {
    counts[i] <- length(which(x==unique_val[i]))
  }
  position <- c(which(counts==max(counts)))
  if (mean(counts)==max(counts)) 
    mode_x <- 'Mode does not exist'
  else 
    mode_x <- unique_val[position]
  return(mode_x)
}

另一个可能的解决方案:

Mode <- function(x) {
    if (is.numeric(x)) {
        x_table <- table(x)
        return(as.numeric(names(x_table)[which.max(x_table)]))
    }
}

用法:

set.seed(100)
v <- sample(x = 1:100, size = 1000000, replace = TRUE)
system.time(Mode(v))

输出:

   user  system elapsed 
   0.32    0.00    0.31