在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

我将使用density()函数来确定一个(可能是连续的)分布的平滑最大值:

function(x) density(x, 2)$x[density(x, 2)$y == max(density(x, 2)$y)]

其中x是数据集合。注意调节平滑的密度函数的调节参数。

其他回答

对此有多种解决方案。我检查了第一个,然后写了我自己的。把它贴在这里,如果它能帮助到任何人:

Mode <- function(x){
  y <- data.frame(table(x))
  y[y$Freq == max(y$Freq),1]
}

让我们用几个例子来测试一下。我正在取虹膜数据集。让我们用数值数据进行测试

> Mode(iris$Sepal.Length)
[1] 5

你可以验证这是正确的。

现在虹膜数据集中唯一的非数字字段(Species)没有模式。让我们用我们自己的例子进行测试

> test <- c("red","red","green","blue","red")
> Mode(test)
[1] red

EDIT

正如注释中提到的,用户可能希望保留输入类型。在这种情况下,mode函数可以修改为:

Mode <- function(x){
  y <- data.frame(table(x))
  z <- y[y$Freq == max(y$Freq),1]
  as(as.character(z),class(x))
}

函数的最后一行只是将最终的模式值强制为原始输入的类型。

模式并不是在所有情况下都有用。所以函数应该处理这种情况。试试下面的函数。

Mode <- function(v) {
  # checking unique numbers in the input
  uniqv <- unique(v)
  # frquency of most occured value in the input data
  m1 <- max(tabulate(match(v, uniqv)))
  n <- length(tabulate(match(v, uniqv)))
  # if all elements are same
  same_val_check <- all(diff(v) == 0)
  if(same_val_check == F){
    # frquency of second most occured value in the input data
    m2 <- sort(tabulate(match(v, uniqv)),partial=n-1)[n-1]
    if (m1 != m2) {
      # Returning the most repeated value
      mode <- uniqv[which.max(tabulate(match(v, uniqv)))]
    } else{
      mode <- "Two or more values have same frequency. So mode can't be calculated."
    }
  } else {
    # if all elements are same
    mode <- unique(v)
  }
  return(mode)
}

输出,

x1 <- c(1,2,3,3,3,4,5)
Mode(x1)
# [1] 3

x2 <- c(1,2,3,4,5)
Mode(x2)
# [1] "Two or more varibles have same frequency. So mode can't be calculated."

x3 <- c(1,1,2,3,3,4,5)
Mode(x3)
# [1] "Two or more values have same frequency. So mode can't be calculated."

计算模式大多是在有因素变量的情况下才可以使用

labels(table(HouseVotes84$V1)[as.numeric(labels(max(table(HouseVotes84$V1))))])

HouseVotes84是在“mlbench”包中可用的数据集。

它会给出最大标签值。它更容易由内置函数本身使用,而无需编写函数。

在r邮件列表中发现了这个,希望对你有帮助。我也是这么想的。您将希望table()数据,排序,然后选择第一个名称。这有点粗俗,但应该有用。

names(sort(-table(x)))[1]

这是我的数据。返回完整表的逐行模式的表解决方案。我用它来推断行类。它负责data中新的set()函数。桌子,应该很快。虽然它不管理NA,但可以通过查看本页上的众多其他解决方案添加。

majorityVote <- function(mat_classes) {
  #mat_classes = dt.pour.centroids_num
  dt.modes <- data.table(mode = integer(nrow(mat_classes)))
  for (i in 1:nrow(mat_classes)) {
    cur.row <- mat_classes[i]
    cur.mode <- which.max(table(t(cur.row)))
    set(dt.modes, i=i, j="mode", value = cur.mode)
  }

  return(dt.modes)
}

可能的用法:

newClass <- majorityVote(my.dt)  # just a new vector with all the modes