在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
我将使用density()函数来确定一个(可能是连续的)分布的平滑最大值:
function(x) density(x, 2)$x[density(x, 2)$y == max(density(x, 2)$y)]
其中x是数据集合。注意调节平滑的密度函数的调节参数。
其他回答
下面是可以用来找到R中矢量变量的模式的代码。
a <- table([vector])
names(a[a==max(a)])
在r邮件列表中发现了这个,希望对你有帮助。我也是这么想的。您将希望table()数据,排序,然后选择第一个名称。这有点粗俗,但应该有用。
names(sort(-table(x)))[1]
假设你的观测值是来自实数的类,当你的观测值是2,2,3,3时,你期望模态为2.5,然后你可以用mode = l1 + I * (f1-f0) / (2f1 -f0 - f2)来估计模态,其中l1..最频繁类的下限,f1..最频繁类的频率,f0..在最频繁类之前的类的频率,f2..在最频繁类之后的类的频率,i..分类间隔,如在1,2,3中给出:
#Small Example
x <- c(2,2,3,3) #Observations
i <- 1 #Class interval
z <- hist(x, breaks = seq(min(x)-1.5*i, max(x)+1.5*i, i), plot=F) #Calculate frequency of classes
mf <- which.max(z$counts) #index of most frequent class
zc <- z$counts
z$breaks[mf] + i * (zc[mf] - zc[mf-1]) / (2*zc[mf] - zc[mf-1] - zc[mf+1]) #gives you the mode of 2.5
#Larger Example
set.seed(0)
i <- 5 #Class interval
x <- round(rnorm(100,mean=100,sd=10)/i)*i #Observations
z <- hist(x, breaks = seq(min(x)-1.5*i, max(x)+1.5*i, i), plot=F)
mf <- which.max(z$counts)
zc <- z$counts
z$breaks[mf] + i * (zc[mf] - zc[mf-1]) / (2*zc[mf] - zc[mf-1] - zc[mf+1]) #gives you the mode of 99.5
如果你想要最频繁的级别,并且你有多个最频繁的级别,你可以得到所有的级别,例如:
x <- c(2,2,3,5,5)
names(which(max(table(x))==table(x)))
#"2" "5"
R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。
然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19
对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)
参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。
如果你问R中的内置函数,也许你可以在软件包pracma中找到它。在这个包中,有一个叫做Mode的函数。