在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

效果很好

> a<-c(1,1,2,2,3,3,4,4,5)
> names(table(a))[table(a)==max(table(a))]

其他回答

我还不能投票,但Rasmus Bååth的答案是我一直在寻找的。 但是,我将稍微修改一下,允许将分布限制在0到1之间。

estimate_mode <- function(x,from=min(x), to=max(x)) {
  d <- density(x, from=from, to=to)
  d$x[which.max(d$y)]
}

我们知道你可能根本不想约束你的分布,那么设置from=-"BIG NUMBER", to="BIG NUMBER"

这个黑客应该工作良好。给你的值以及模式的计数:

Mode <- function(x){
a = table(x) # x is a vector
return(a[which.max(a)])
}

另一个可能的解决方案:

Mode <- function(x) {
    if (is.numeric(x)) {
        x_table <- table(x)
        return(as.numeric(names(x_table)[which.max(x_table)]))
    }
}

用法:

set.seed(100)
v <- sample(x = 1:100, size = 1000000, replace = TRUE)
system.time(Mode(v))

输出:

   user  system elapsed 
   0.32    0.00    0.31 

效果很好

> a<-c(1,1,2,2,3,3,4,4,5)
> names(table(a))[table(a)==max(table(a))]

有一个包谦和提供单变量单模态(有时是多模态)数据的模态估计和通常概率分布的模态值。

mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)

library(modeest)
mlv(mySamples, method = "mfv")

Mode (most likely value): 19 
Bickel's modal skewness: -0.1 
Call: mlv.default(x = mySamples, method = "mfv")

欲了解更多信息,请参阅本页

你也可以在CRAN任务视图:概率分布中寻找“模式估计”。已经提出了两个新的一揽子计划。