在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
可以尝试以下功能:
将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!
mode <- function(x){
y <- as.factor(x)
freq <- summary(y)
mode <- names(freq)[freq[names(freq)] == max(freq)]
as.numeric(mode)
}
其他回答
对Ken Williams的回答做了一个小修改,增加了可选的params na。Rm和return_multiple。
与依赖names()的答案不同,此答案在返回值中维护x的数据类型。
stat_mode <- function(x, return_multiple = TRUE, na.rm = FALSE) {
if(na.rm){
x <- na.omit(x)
}
ux <- unique(x)
freq <- tabulate(match(x, ux))
mode_loc <- if(return_multiple) which(freq==max(freq)) else which.max(freq)
return(ux[mode_loc])
}
要显示它与可选参数一起工作并维护数据类型:
foo <- c(2L, 2L, 3L, 4L, 4L, 5L, NA, NA)
bar <- c('mouse','mouse','dog','cat','cat','bird',NA,NA)
str(stat_mode(foo)) # int [1:3] 2 4 NA
str(stat_mode(bar)) # chr [1:3] "mouse" "cat" NA
str(stat_mode(bar, na.rm=T)) # chr [1:2] "mouse" "cat"
str(stat_mode(bar, return_mult=F, na.rm=T)) # chr "mouse"
感谢@Frank的简化。
在r邮件列表中发现了这个,希望对你有帮助。我也是这么想的。您将希望table()数据,排序,然后选择第一个名称。这有点粗俗,但应该有用。
names(sort(-table(x)))[1]
R有如此多的附加包,其中一些可以很好地提供数字列表/系列/向量的[统计]模式。
然而,R的标准库本身似乎没有这样一个内置的方法!解决这个问题的一种方法是使用一些像下面这样的结构(如果你经常使用…则将其转换为函数):
mySamples <- c(19, 4, 5, 7, 29, 19, 29, 13, 25, 19)
tabSmpl<-tabulate(mySamples)
SmplMode<-which(tabSmpl== max(tabSmpl))
if(sum(tabSmpl == max(tabSmpl))>1) SmplMode<-NA
> SmplMode
[1] 19
对于更大的示例列表,应该考虑使用一个临时变量max(tabSmpl)值(我不知道R会自动优化这个)
参考:参见KickStarting R课程中的“How about median and mode? 这似乎证实了(至少在写这节课的时候)R中没有模态函数(嗯…你会发现Mode()用于断言变量的类型)。
估计来自连续单变量分布(例如正态分布)的数字向量的模式的一种快速而肮脏的方法是定义并使用以下函数:
estimate_mode <- function(x) {
d <- density(x)
d$x[which.max(d$y)]
}
然后得到模态估计:
x <- c(5.8, 5.6, 6.2, 4.1, 4.9, 2.4, 3.9, 1.8, 5.7, 3.2)
estimate_mode(x)
## 5.439788
还有一个解决方案,适用于数字和字符/因子数据:
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
在我的小机器上,它可以在大约半秒内生成并找到一个10m整数向量的模式。
如果您的数据集可能有多种模式,上述解决方案采用与which相同的方法。Max,并返回模式集中第一个出现的值。要返回所有模式,使用这个变体(来自评论中的@digEmAll):
Modes <- function(x) {
ux <- unique(x)
tab <- tabulate(match(x, ux))
ux[tab == max(tab)]
}