在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?
当前回答
监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。
示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。
无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。
例如:数据挖掘聚类算法。
其他回答
监督式学习
在这种情况下,用于训练网络的每个输入模式都是 与输出模式相关联,它是目标或所需的 模式。在学习过程中假定有老师在场 过程,当对网络的计算结果进行比较时 输出和正确的预期输出,以确定误差。的 错误可以用来更改网络参数,从而导致 性能的提高。
无监督学习
在这种学习方法中,目标输出不会呈现给机器 网络。这就好像没有老师来呈现所渴望的 模式,因此,系统通过发现和学习自己 适应输入模式中的结构特征。
在监督学习中,为输入x提供预期结果y(即,当输入x时模型应该产生的输出),这通常被称为对应输入x的“类”(或“标签”)。
在无监督学习中,不提供示例x的“类”。因此,无监督学习可以被认为是在未标记的数据集中寻找“隐藏结构”。
监督学习的方法包括:
分类(1R、朴素贝叶斯、决策树学习算法等) 如ID3 CART,等等) 数值预测
无监督学习的方法包括:
聚类(k -均值,层次聚类) 关联规则学习
监督式学习:
监督学习算法分析训练数据并产生推断函数,该函数可用于映射新的示例。
我们提供训练数据,我们知道对某个输入的正确输出 我们知道输入和输出之间的关系
问题类别:
回归:预测连续输出中的结果=>将输入变量映射到某个连续函数。
例子:
给一个人的照片,预测他的年龄
分类:在离散输出中预测结果=>映射输入变量到离散类别
例子:
这个肿瘤癌变了吗?
无监督学习:
无监督学习从未被标记、分类或分类的测试数据中学习。无监督学习识别数据中的共性,并根据每个新数据中这些共性的存在与否做出反应。
我们可以根据数据中变量之间的关系对数据进行聚类,从而推导出这种结构。 基于预测结果没有反馈。
问题类别:
聚类:是对一组对象进行分组,使同一组(称为聚类)中的对象彼此之间(在某种意义上)比其他组(聚类)中的对象更相似。
例子:
收集100万个不同的基因,找到一种方法,自动将这些基因分组,这些基因在某种程度上是相似的,或因不同的变量(如寿命、位置、角色等)而相关。
这里列出了常用的用例。
数据挖掘中分类和聚类的区别?
引用:
Supervised_learning
Unsupervised_learning
来自coursera的机器学习
走向数据科学
例如,训练神经网络通常是监督学习:你告诉网络你输入的特征向量对应于哪个类。
聚类是无监督学习:你让算法决定如何将样本分组到具有共同属性的类中。
另一个无监督学习的例子是Kohonen的自组织地图。
Supervised Learning is basically where you have input variables(x) and output variable(y) and use algorithm to learn the mapping function from input to the output. The reason why we called this as supervised is because algorithm learns from the training dataset, the algorithm iteratively makes predictions on the training data. Supervised have two types-Classification and Regression. Classification is when the output variable is category like yes/no, true/false. Regression is when the output is real values like height of person, Temperature etc.
联合国监督学习是指我们只有输入数据(X),没有输出变量。 这被称为无监督学习,因为与上面的监督学习不同,它没有正确的答案,也没有老师。算法由它们自己的设计来发现和呈现数据中有趣的结构。
无监督学习的类型有聚类和关联。
推荐文章
- model.eval()在pytorch中做什么?
- 为什么binary_crossentropy和categorical_crossentropy对同一个问题给出不同的性能?
- 一般来说,应该选择哪种机器学习分类器?
- 是否可以使用scikit-learn K-Means聚类来指定自己的距离函数?
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在Python中进行热编码?
- 如何将数据分成3组(训练、验证和测试)?
- 历史库存数据的来源
- 如何在PyTorch中初始化权重?
- 关于如何将数据集划分为训练集和验证集,是否存在经验法则?
- 在scikit-learn中保存分类器到磁盘
- 如何解释机器学习模型的损失和准确性
- 线性回归和逻辑回归的区别是什么?
- 监督学习和无监督学习的区别是什么?
- 如何在Python中实现Softmax函数