我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

如果您碰巧使用“kc_house_data.csv”数据集(一些评论者和许多数据科学新手似乎使用这个数据集,因为它出现在许多流行的课程材料中),则该数据是错误的,并且是错误的真正来源。

为了解决这个问题,从2022年开始:

删除csv文件中的最后一行(空) 有两行包含一个空数据值"x,x,,x,x" -要修复它,不要删除逗号,而是添加一个随机整数值,如2000,因此它看起来像"x,x,2000,x,x"

不要忘记在项目中保存和重新加载。

所有其他答案都是有帮助和正确的,但在这种情况下不是:

如果你使用kc_house_data.csv,你需要修复文件中的数据,没有其他帮助,空数据字段将随机转移其他数据,并产生难以追踪到源的奇怪错误!

其他回答

我发现在一个新列上调用pct_change后,nan存在于一行中。我用下面的代码删除nan行

df = df.replace([np.inf, -np.inf], np.nan)
df = df.dropna()
df = df.reset_index()

泡芙! !在我的情况下,问题是关于NaN值…

您可以使用此函数列出具有NaN的列

your_data.isnull().sum()

然后你可以在数据集文件中填充这些NAN值。

下面是如何“将NaN替换为零,将无穷大替换为大的有限数”的代码。

your_data[:] = np.nan_to_num(your_data)

从numpy.nan_to_num

这是我的函数(基于此)来清除数据集的nan, Inf和缺失的单元格(用于倾斜的数据集):

import pandas as pd
import numpy as np

def clean_dataset(df):
    assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame"
    df.dropna(inplace=True)
    indices_to_keep = ~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)
    return df[indices_to_keep].astype(np.float64)

我有错误后,试图选择一个子集的行:

df = df.reindex(index=my_index)

结果是my_index包含df中不包含的值。索引,所以reindex函数插入一些新行,并用nan填充它们。

在我的例子中,问题是许多scikit函数返回numpy数组,这些数组没有pandas索引。因此,当我使用那些numpy数组来构建新的dataframe时,有一个索引不匹配,然后我尝试将它们与原始数据混合。