我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

这里没有一个答案对我有用。这是有效的。

Test_y = np.nan_to_num(Test_y)

它将无穷大值替换为高有限值,将nan值替换为数字

其他回答

在处理这个问题很长一段时间后,我意识到这是因为在训练集和测试集的分割中,所有数据行的数据列都是相同的。然后在某些算法中进行一些计算可能会导致无穷大的结果。如果您正在使用的数据的关闭行更可能是相似的,那么重新排列数据会有所帮助。这是scikit的一个漏洞。我使用的是0.23.2版本。

泡芙! !在我的情况下,问题是关于NaN值…

您可以使用此函数列出具有NaN的列

your_data.isnull().sum()

然后你可以在数据集文件中填充这些NAN值。

下面是如何“将NaN替换为零,将无穷大替换为大的有限数”的代码。

your_data[:] = np.nan_to_num(your_data)

从numpy.nan_to_num

我有同样的错误,在我的情况下,X和y是数据帧,所以我必须先将它们转换为矩阵:

X = X.values.astype(np.float)
y = y.values.astype(np.float)

编辑:最初建议的X.as_matrix()已弃用

我的输入数组的维度是倾斜的,因为我的输入csv有空格。

我有错误后,试图选择一个子集的行:

df = df.reindex(index=my_index)

结果是my_index包含df中不包含的值。索引,所以reindex函数插入一些新行,并用nan填充它们。