我如何在MongoDB中执行SQL Join等效?

例如,假设你有两个集合(用户和评论),我想拉pid=444的所有评论以及每个评论的用户信息。

comments
  { uid:12345, pid:444, comment="blah" }
  { uid:12345, pid:888, comment="asdf" }
  { uid:99999, pid:444, comment="qwer" }

users
  { uid:12345, name:"john" }
  { uid:99999, name:"mia"  }

是否有一种方法可以一次性提取具有特定字段的所有评论(例如. ...find({pid:444}))和与每个评论相关的用户信息?

目前,我首先获取符合条件的注释,然后找出结果集中的所有uid,获取用户对象,并将它们与注释的结果合并。看来我做错了。


当前回答

我们可以使用mongodb客户端控制台在几行中使用一个简单的函数合并/连接一个集合中的所有数据,现在我们可以执行所需的查询。 下面是一个完整的例子,

——作者:

db.authors.insert([
    {
        _id: 'a1',
        name: { first: 'orlando', last: 'becerra' },
        age: 27
    },
    {
        _id: 'a2',
        name: { first: 'mayra', last: 'sanchez' },
        age: 21
    }
]);

——类:

db.categories.insert([
    {
        _id: 'c1',
        name: 'sci-fi'
    },
    {
        _id: 'c2',
        name: 'romance'
    }
]);

——书

db.books.insert([
    {
        _id: 'b1',
        name: 'Groovy Book',
        category: 'c1',
        authors: ['a1']
    },
    {
        _id: 'b2',
        name: 'Java Book',
        category: 'c2',
        authors: ['a1','a2']
    },
]);

-图书借阅

db.lendings.insert([
    {
        _id: 'l1',
        book: 'b1',
        date: new Date('01/01/11'),
        lendingBy: 'jose'
    },
    {
        _id: 'l2',
        book: 'b1',
        date: new Date('02/02/12'),
        lendingBy: 'maria'
    }
]);

-神奇之处:

db.books.find().forEach(
    function (newBook) {
        newBook.category = db.categories.findOne( { "_id": newBook.category } );
        newBook.lendings = db.lendings.find( { "book": newBook._id  } ).toArray();
        newBook.authors = db.authors.find( { "_id": { $in: newBook.authors }  } ).toArray();
        db.booksReloaded.insert(newBook);
    }
);

-获取新的收集数据:

db.booksReloaded.find().pretty()

-回复:)

{
    "_id" : "b1",
    "name" : "Groovy Book",
    "category" : {
        "_id" : "c1",
        "name" : "sci-fi"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        }
    ],
    "lendings" : [
        {
            "_id" : "l1",
            "book" : "b1",
            "date" : ISODate("2011-01-01T00:00:00Z"),
            "lendingBy" : "jose"
        },
        {
            "_id" : "l2",
            "book" : "b1",
            "date" : ISODate("2012-02-02T00:00:00Z"),
            "lendingBy" : "maria"
        }
    ]
}
{
    "_id" : "b2",
    "name" : "Java Book",
    "category" : {
        "_id" : "c2",
        "name" : "romance"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        },
        {
            "_id" : "a2",
            "name" : {
                "first" : "mayra",
                "last" : "sanchez"
            },
            "age" : 21
        }
    ],
    "lendings" : [ ]
}

希望这句话能帮到你。

其他回答

我认为,如果你需要规范化的数据表-你需要尝试一些其他的数据库解决方案。

但是我在Git上找到了MOngo的解决方案 顺便说一下,在插入代码-它有电影的名称,但没有电影的ID。

问题

你有一个演员集合和他们所做的电影数组。

您希望生成一个Movies集合,每个Movies中都包含一个actor数组。

一些示例数据

 db.actors.insert( { actor: "Richard Gere", movies: ['Pretty Woman', 'Runaway Bride', 'Chicago'] });
 db.actors.insert( { actor: "Julia Roberts", movies: ['Pretty Woman', 'Runaway Bride', 'Erin Brockovich'] });

解决方案

我们需要循环遍历Actor文档中的每个电影,并分别发出每个电影。

这里的问题是在减少阶段。我们不能从reduce阶段发出一个数组,因此必须在返回的“value”文档中构建一个Actors数组。

The code
map = function() {
  for(var i in this.movies){
    key = { movie: this.movies[i] };
    value = { actors: [ this.actor ] };
    emit(key, value);
  }
}

reduce = function(key, values) {
  actor_list = { actors: [] };
  for(var i in values) {
    actor_list.actors = values[i].actors.concat(actor_list.actors);
  }
  return actor_list;
}

注意,actor_list实际上是一个包含数组的javascript对象。还要注意map发出相同的结构。

执行以下命令执行map / reduce,将其输出到“pivot”集合并打印结果:

printjson (db.actors。mapReduce(map, reduce, "pivot")); db.pivot.find () .forEach (printjson);

以下是输出示例,请注意《风月俏佳人》和《逃跑新娘》中都有“理查德·基尔”和“茱莉亚·罗伯茨”。

{ "_id" : { "movie" : "Chicago" }, "value" : { "actors" : [ "Richard Gere" ] } }
{ "_id" : { "movie" : "Erin Brockovich" }, "value" : { "actors" : [ "Julia Roberts" ] } }
{ "_id" : { "movie" : "Pretty Woman" }, "value" : { "actors" : [ "Richard Gere", "Julia Roberts" ] } }
{ "_id" : { "movie" : "Runaway Bride" }, "value" : { "actors" : [ "Richard Gere", "Julia Roberts" ] } }

查找美元(聚合)

对同一数据库中的未分片集合执行左外连接,以从“已连接”集合中筛选文档进行处理。$查找阶段向每个输入文档添加一个新的数组字段,其元素是“已加入”集合中的匹配文档。$查找阶段将这些重新塑造的文档传递给下一个阶段。 $查找阶段的语法如下:

平等的比赛

要在输入文档中的字段与" joined "集合中的文档中的字段之间执行相等匹配,$lookup stage的语法如下:

{
   $lookup:
     {
       from: <collection to join>,
       localField: <field from the input documents>,
       foreignField: <field from the documents of the "from" collection>,
       as: <output array field>
     }
}

该操作将对应于以下伪sql语句:

SELECT *, <output array field>
FROM collection
WHERE <output array field> IN (SELECT <documents as determined from the pipeline>
                               FROM <collection to join>
                               WHERE <pipeline> );

蒙哥URL

在3.2.6之前,Mongodb不像mysql那样支持join查询。下面是适合你的解决方案。

 db.getCollection('comments').aggregate([
        {$match : {pid : 444}},
        {$lookup: {from: "users",localField: "uid",foreignField: "uid",as: "userData"}},
   ])

不,看起来你并没有做错。MongoDB连接是“客户端”。就像你说的

目前,我首先获取符合条件的注释,然后找出结果集中的所有uid,获取用户对象,并将它们与注释的结果合并。看来我做错了。

1) Select from the collection you're interested in.
2) From that collection pull out ID's you need
3) Select from other collections
4) Decorate your original results.

它不是一个“真正的”连接,但它实际上比SQL连接有用得多,因为您不必处理“多”面连接的重复行,而是修饰最初选择的集合。

这一页上有很多废话和FUD。结果5年后,MongoDB仍然存在。

我们可以使用mongodb客户端控制台在几行中使用一个简单的函数合并/连接一个集合中的所有数据,现在我们可以执行所需的查询。 下面是一个完整的例子,

——作者:

db.authors.insert([
    {
        _id: 'a1',
        name: { first: 'orlando', last: 'becerra' },
        age: 27
    },
    {
        _id: 'a2',
        name: { first: 'mayra', last: 'sanchez' },
        age: 21
    }
]);

——类:

db.categories.insert([
    {
        _id: 'c1',
        name: 'sci-fi'
    },
    {
        _id: 'c2',
        name: 'romance'
    }
]);

——书

db.books.insert([
    {
        _id: 'b1',
        name: 'Groovy Book',
        category: 'c1',
        authors: ['a1']
    },
    {
        _id: 'b2',
        name: 'Java Book',
        category: 'c2',
        authors: ['a1','a2']
    },
]);

-图书借阅

db.lendings.insert([
    {
        _id: 'l1',
        book: 'b1',
        date: new Date('01/01/11'),
        lendingBy: 'jose'
    },
    {
        _id: 'l2',
        book: 'b1',
        date: new Date('02/02/12'),
        lendingBy: 'maria'
    }
]);

-神奇之处:

db.books.find().forEach(
    function (newBook) {
        newBook.category = db.categories.findOne( { "_id": newBook.category } );
        newBook.lendings = db.lendings.find( { "book": newBook._id  } ).toArray();
        newBook.authors = db.authors.find( { "_id": { $in: newBook.authors }  } ).toArray();
        db.booksReloaded.insert(newBook);
    }
);

-获取新的收集数据:

db.booksReloaded.find().pretty()

-回复:)

{
    "_id" : "b1",
    "name" : "Groovy Book",
    "category" : {
        "_id" : "c1",
        "name" : "sci-fi"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        }
    ],
    "lendings" : [
        {
            "_id" : "l1",
            "book" : "b1",
            "date" : ISODate("2011-01-01T00:00:00Z"),
            "lendingBy" : "jose"
        },
        {
            "_id" : "l2",
            "book" : "b1",
            "date" : ISODate("2012-02-02T00:00:00Z"),
            "lendingBy" : "maria"
        }
    ]
}
{
    "_id" : "b2",
    "name" : "Java Book",
    "category" : {
        "_id" : "c2",
        "name" : "romance"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        },
        {
            "_id" : "a2",
            "name" : {
                "first" : "mayra",
                "last" : "sanchez"
            },
            "age" : 21
        }
    ],
    "lendings" : [ ]
}

希望这句话能帮到你。