这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

避免分支预测错误的一种方法是建立一个搜索表,并用数据来编制索引。 Stefan de Bruijn在答复中讨论了这一点。

但在此情况下,我们知道值在范围[0,255],我们只关心值 128。这意味着我们可以很容易地提取一小块来说明我们是否想要一个值:通过将数据移到右边的7位数,我们只剩下0位或1位数,我们只有1位数时才想要增加值。让我们把这个位数称为“决定位数 ” 。

将决定位数的 0/1 值作为索引输入一个阵列, 我们就可以生成一个代码, 无论数据是排序还是未排序, 都同样快速。 我们的代码总是会添加一个值, 但是当决定位数为 0 时, 我们将会添加一个值, 我们并不关心的地方 。 以下是代码 :

// Test
clock_t start = clock();
long long a[] = {0, 0};
long long sum;

for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        int j = (data[c] >> 7);
        a[j] += data[c];
    }
}

double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER_SEC;
sum = a[1];

此代码浪费了一半的添加值, 但从未出现分支预测失败 。 随机数据比有实际的如果声明的版本要快得多 。

但在我的测试中,一个清晰的查看表比这个稍快一些, 可能是因为对一个查看表的索引比位变换略快一些。 这显示了我的代码是如何设置和使用搜索表的( 无法想象地称为“ 搜索表 ” ) 。lut代码中“ 查看表格” 。 这是 C++ 代码 :

// Declare and then fill in the lookup table
int lut[256];
for (unsigned c = 0; c < 256; ++c)
    lut[c] = (c >= 128) ? c : 0;

// Use the lookup table after it is built
for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        sum += lut[data[c]];
    }
}

在此情况下, 查看表只有256 字节, 所以它在一个缓存中非常适合, 并且非常快。 如果数据是 24 位值, 而我们只想要其中一半的话, 这个技术就不会有效... 搜索表会太大而不切实际。 另一方面, 我们可以将上面显示的两种技术结合起来: 首先将比特移开, 然后将一个查看表索引。 对于一个仅需要顶端半值的 24 位值, 我们可能会将数据右移12 位值, 并留下一个 12 位值的表格索引。 12 位表指数意味着一个有 4096 个值的表格, 这可能是实用的 。

将技术编成一个阵列,而不是使用if语句,可用于决定使用哪个指针。我看到一个实施二进制树的图书馆,而不是有两个命名指针(指针)。pLeftpRight或什么的)有长2至2的指针阵列,并使用“决定位位”技术来决定应跟随哪一个。例如,而不是:

if (x < node->value)
    node = node->pLeft;
else
    node = node->pRight;

这个图书馆会做一些事情,比如:

i = (x < node->value);
node = node->link[i];

以下是这个代码的链接:红黑树, 永久封存

其他回答

毫无疑问,我们中有些人会感兴趣的是,如何确定对CPU的分支种植者有问题的代码。cachegrind使用--branch-sim=yes将外环数量减少到10 000个,并编成g++给出这些结果:

分类 :

==32551== Branches:        656,645,130  (  656,609,208 cond +    35,922 ind)
==32551== Mispredicts:         169,556  (      169,095 cond +       461 ind)
==32551== Mispred rate:            0.0% (          0.0%     +       1.2%   )

未分类 :

==32555== Branches:        655,996,082  (  655,960,160 cond +  35,922 ind)
==32555== Mispredicts:     164,073,152  (  164,072,692 cond +     460 ind)
==32555== Mispred rate:           25.0% (         25.0%     +     1.2%   )

向下钻入cg_annotate我们可以看到有关循环:

分类 :

          Bc    Bcm Bi Bim
      10,001      4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .      .  .   .      {
           .      .  .   .          // primary loop
 327,690,000 10,016  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .      .  .   .          {
 327,680,000 10,006  0   0              if (data[c] >= 128)
           0      0  0   0                  sum += data[c];
           .      .  .   .          }
           .      .  .   .      }

未分类 :

          Bc         Bcm Bi Bim
      10,001           4  0   0      for (unsigned i = 0; i < 10000; ++i)
           .           .  .   .      {
           .           .  .   .          // primary loop
 327,690,000      10,038  0   0          for (unsigned c = 0; c < arraySize; ++c)
           .           .  .   .          {
 327,680,000 164,050,007  0   0              if (data[c] >= 128)
           0           0  0   0                  sum += data[c];
           .           .  .   .          }
           .           .  .   .      }

这样可以方便地识别有问题的行 - 在未排序的版本中if (data[c] >= 128)造成164 050 007个错误预测的附带条件的分支(第1行)。Bcm),根据暗礁的分支 - 指示模型, 而它只造成10,006 在分类版本中。


或者,在Linux上,你可以使用性能计数器子系统完成同样的任务,但使用CPU计数器进行本地性能。

perf stat ./sumtest_sorted

分类 :

 Performance counter stats for './sumtest_sorted':

  11808.095776 task-clock                #    0.998 CPUs utilized          
         1,062 context-switches          #    0.090 K/sec                  
            14 CPU-migrations            #    0.001 K/sec                  
           337 page-faults               #    0.029 K/sec                  
26,487,882,764 cycles                    #    2.243 GHz                    
41,025,654,322 instructions              #    1.55  insns per cycle        
 6,558,871,379 branches                  #  555.455 M/sec                  
       567,204 branch-misses             #    0.01% of all branches        

  11.827228330 seconds time elapsed

未分类 :

 Performance counter stats for './sumtest_unsorted':

  28877.954344 task-clock                #    0.998 CPUs utilized          
         2,584 context-switches          #    0.089 K/sec                  
            18 CPU-migrations            #    0.001 K/sec                  
           335 page-faults               #    0.012 K/sec                  
65,076,127,595 cycles                    #    2.253 GHz                    
41,032,528,741 instructions              #    0.63  insns per cycle        
 6,560,579,013 branches                  #  227.183 M/sec                  
 1,646,394,749 branch-misses             #   25.10% of all branches        

  28.935500947 seconds time elapsed

它还可以进行源代码批注,进行拆卸。

perf record -e branch-misses ./sumtest_unsorted
perf annotate -d sumtest_unsorted
 Percent |      Source code & Disassembly of sumtest_unsorted
------------------------------------------------
...
         :                      sum += data[c];
    0.00 :        400a1a:       mov    -0x14(%rbp),%eax
   39.97 :        400a1d:       mov    %eax,%eax
    5.31 :        400a1f:       mov    -0x20040(%rbp,%rax,4),%eax
    4.60 :        400a26:       cltq   
    0.00 :        400a28:       add    %rax,-0x30(%rbp)
...

见见性能辅导以获取更多细节。

我刚读过这个问题及其答案,我觉得缺少答案。

消除我发现在管理下语言中特别出色的分支预测的一个常见方法是, 表格搜索而不是使用分支(虽然我还没有在本案中测试过它 ) 。

如果:

  1. 它是一个小桌子 很可能在处理器中隐藏
  2. 您正在一个非常紧凑的循环中运行着一些东西和/或处理器可以预加载数据。

背景和原因

从处理器的角度来看,您的内存是慢的。为了弥补速度的差异,在您的处理器( L1/L2 缓存) 中嵌入了几个缓存。 想象一下, 您正在做你的好计算, 并发现您需要一个内存。 处理器会得到它的“ 装载” 操作, 并将内存部分装入缓存中, 然后用缓存来进行其余的计算。 因为内存相对缓慢, 此“ 装载” 将会减缓您的程序 。

像分支预测一样,这在Pentium处理器中被优化了:处理器预测,它需要在操作实际到达缓存之前装入一个数据,并试图将数据装入缓存中。我们已经看到,分支预测有时会发生可怕的错误 -- -- 在最坏的情况下,你需要回去等待一个记忆负荷,这将需要永远的时间(我们已看到,分支预测有时会发生可怕的错误)。换句话说,失败的分支预测是坏的,在分支预测失败之后的记忆负荷实在是太可怕了!).

幸运的是,对于我们来说,如果记忆存取模式可以预测,处理器将装在快速缓存中,一切都很好。

我们首先需要知道的是? 虽然小一点一般比较好,但大拇指规则是坚持使用大小为 4096 字节的搜索表格。作为一个上限:如果您查看的表格大于 64K, 可能值得重新考虑 。

构建表格

因此我们发现我们可以创建一个小表格。 接下来要做的是设置一个查找功能。 查找功能通常是使用几个基本整数操作( 以及, 或者, xor, 转换, 转换, 添加, 删除, 或倍增) 的小型函数。 您想要将您的输入通过外观功能转换为表格中某种“ 独一无二的密钥 ” , 这样就可以简单给出您想要它做的所有工作的答案 。

在此情况下 : 128 表示我们可以保留这个值, < 128 表示我们摆脱它。 最简单的方法就是使用“ 和 ” : 如果我们保留它, 我们和它使用 7FFFFFFF; 如果我们想要摆脱它, 我们和它使用 0。 注意 128 也是一种2 的功率, 所以我们可以继续制作一个32768/128 整数的表格, 并填满它 1 0 和很多 7FFFFFFFFFFFF。

受管理语言

毕竟,管理下的语言会用分支来检查阵列的界限,以确保你不会搞砸...

嗯,不确切地说... : -)

在取消管理下语文的这一分支方面,已经做了相当多的工作。

for (int i = 0; i < array.Length; ++i)
{
   // Use array[i]
}

在此情况下, 编译者明显知道边界条件永远不会被击中 。 至少微软 JIT 编译者( 但我预计爪哇会做类似的事情) 将会注意到这一点并完全取消检查 。 WOW 表示没有分支 。 同样, 它也会处理其他明显的例子 。

如果您遇到管理下语言的查询问题 -- -- 关键是添加 a& 0x[something]FFF使边界检查可以预测, 并且看着它更快地发展。

本案的结果

// Generate data
int arraySize = 32768;
int[] data = new int[arraySize];

Random random = new Random(0);
for (int c = 0; c < arraySize; ++c)
{
    data[c] = random.Next(256);
}

/*To keep the spirit of the code intact, I'll make a separate lookup table
(I assume we cannot modify 'data' or the number of loops)*/

int[] lookup = new int[256];

for (int c = 0; c < 256; ++c)
{
    lookup[c] = (c >= 128) ? c : 0;
}

// Test
DateTime startTime = System.DateTime.Now;
long sum = 0;

for (int i = 0; i < 100000; ++i)
{
    // Primary loop
    for (int j = 0; j < arraySize; ++j)
    {
        /* Here you basically want to use simple operations - so no
        random branches, but things like &, |, *, -, +, etc. are fine. */
        sum += lookup[data[j]];
    }
}

DateTime endTime = System.DateTime.Now;
Console.WriteLine(endTime - startTime);
Console.WriteLine("sum = " + sum);
Console.ReadLine();

快速和简单理解的答案(阅读其他细节)

这一概念被称为子分支预测

分支预测是一种优化技术,它预言代码在被确知之前将走的道路。 这一点很重要,因为在代码执行过程中,机器预设了几条代码声明并将其储存在管道中。

问题出在有条件的分支中,有两种可能的路径或代码部分可以执行。

当预测是真实的, 优化技术 完成。

当预测是虚假的,用简单的方式解释, 管道中储存的代码声明被证明是错误的, 而实际的代码必须全部重新加载, 这需要很多时间。

正如常识所显示的,对某类物品的预测比对某类未分类物品的预测更准确。

分支预测可视化:

已分类
sorted未排序unsorted

分流收益!

重要的是要理解分支错误控制不会减慢程序。 错误预测的成本就好像不存在分支预测,而你等待着对表达方式的评价来决定运行的代码(下段有进一步的解释 ) 。

if (expression)
{
    // Run 1
} else {
    // Run 2
}

每当有if-else \ switch语句中,必须评价表达式,以决定应执行哪个区块。在编译器生成的组装代码中,有条件分支分支分支插入说明。

分支指令可导致计算机开始执行不同的指令序列,从而偏离其按顺序执行指令的默认行为(即如果表达式为虚假,程序跳过代码)if(根据某些条件,即我们案件的表达方式评价)

尽管如此,汇编者试图在对结果进行实际评估之前预测结果。if如果表达式是真实的,那么就太好了!我们得到了评估它所需的时间,并在代码中取得了进展;如果不是,我们运行错误的代码,管道被冲洗,正确的模块被运行。

可视化:

假设你需要选择路线1或路线2, 等待你的伴侣检查地图, 你已经停留在 ##,等待, 或者你可以选择路线1, 如果你运气好(路线1是正确的路线), 那么伟大的你不必等待你的伴侣检查地图(你省下时间让他检查地图), 否则你就会转回去。

尽管冲水管道的速度超快,但如今赌博是值得的。 预测分类数据或缓慢变化的数据总是比预测快速变化容易,也好于预测快速变化。

 O      Route 1  /-------------------------------
/|\             /
 |  ---------##/
/ \            \
                \
        Route 2  \--------------------------------

由于一种被称为分支预测的现象,分类的阵列的处理速度要快于未排序的阵列。

分支预测器是一个数字电路(在计算机结构中),它试图预测一个分支会走哪条路,从而改善教学管道的流量。电路/计算机预测下一步并进行执行。

错误的预测导致回到前一步,执行另一个预测。 假设预测是正确的,代码将持续到下一步骤。 错误的预测导致重复同一步骤,直到出现正确的预测。

你问题的答案很简单

在未排列的阵列中,计算机进行多次预测,导致误差的可能性增加。而在分类的阵列中,计算机的预测减少,误差的可能性减少。 做更多的预测需要更多的时间。

排序的数组: 直路

____________________________________________________________________________________
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

未排列的队列: 曲线路

______   ________
|     |__|

部门预测: 猜测/预测哪条道路是直的,未检查就沿着这条道路走

___________________________________________ Straight road
 |_________________________________________|Longer road

虽然两条道路都到达同一目的地,但直路更短,另一条更长。如果你错误地选择另一条道路,就没有回头路,所以如果你选择更长的路,你就会浪费一些更多的时间。这与计算机中发生的事情相似,我希望这能帮助你更好地了解。


我还想列举:@Simon_ weaver评论中:

它不会减少预测数量 — — 它会减少不正确的预测。 它仍然必须通过循环预测每一次...