这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵阵列被分割在一个毗连区内,data < 128data >= 128。因此,您应该用 a 来找到分区点脑细胞细胞研究(使用Lg(arraySize) = 15比较),然后从该点做一个直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,约近分类或未排序的解决方案为 :sum= 3137536;(假设分布真正统一,预计价值为191.5的16384个样本):-)

其他回答

其他答复的假设是,一个人需要对数据进行分类是不正确的。

以下代码不排序整个阵列,但只排序其中的200个元素部分,因此运行速度最快。

只对 K 元素部分进行排序,以线性时间完成预处理,O(n),而不是O(n.log(n))排序整个阵列需要时间 。

#include <algorithm>
#include <ctime>
#include <iostream>

int main() {
    int data[32768]; const int l = sizeof data / sizeof data[0];

    for (unsigned c = 0; c < l; ++c)
        data[c] = std::rand() % 256;

    // sort 200-element segments, not the whole array
    for (unsigned c = 0; c + 200 <= l; c += 200)
        std::sort(&data[c], &data[c + 200]);

    clock_t start = clock();
    long long sum = 0;

    for (unsigned i = 0; i < 100000; ++i) {
        for (unsigned c = 0; c < sizeof data / sizeof(int); ++c) {
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    std::cout << static_cast<double>(clock() - start) / CLOCKS_PER_SEC << std::endl;
    std::cout << "sum = " << sum << std::endl;
}

这个“证明”也与任何算法问题无关, 比如排序顺序, 并且确实是分支预测。

你是受害者子分支预测失败 。


分会的预测是什么?

考虑铁路交叉点:

Image showing a railroad junction 图像图像图像图像依据创用CC BY-ND 2.CC-By-SA 3.0 CC-By-SA 3.0许可证。

现在,为了争论起见,假设这是在1800年代, 在长途或无线电通信之前。

您是连接点的盲人接线员, 听到火车来电的声音。 您不知道该走哪条路。 您停止了火车, 询问司机他们想要的方向 。 然后您将开关设置得当 。

火车很重,而且有很多惰性, 所以它们需要永远的启动 并放慢速度。

有更好的办法吗?

  • 如果你猜对了,它会继续下去。
  • 如果你猜错了,船长会停下来,后退,喊你开开关。然后它就可以从另一条路重新开始。

如果你每次猜对火车永远不会停下来
如果你猜错太频繁火车会花很多时间停下来 备份 重新开始


考虑如果报表:在加工一级,它是一个分支指令:

Screenshot of compiled code containing an if statement

你是一个处理者,你看见一个分支。你不知道它会走哪条路。你做什么?你停止执行,等待以前的指令完成。然后,你继续走正确的道路。

现代处理器复杂,管道长。 这意味着它们永远需要“暖和”和“慢下来 ” 。

有更好的办法吗?

  • 如果你猜对了,你继续执行。
  • 如果您猜错了, 您需要冲洗管道, 然后滚回分支。 然后您就可以重新启动另一条路径 。

如果你每次猜对死刑将永远不会停止
如果你猜错太频繁,你花了很多时间拖延, 后退,重新开始。


这是分支预测。 我承认这不是最好的比喻, 因为火车只能用旗帜发出方向信号。 但在电脑上, 处理器不知道分支会朝哪个方向前进, 直到最后一刻。

您在战略上如何猜测如何将列车必须返回并沿着另一条路行驶的次数最小化 ? 您看看过去的历史 。 如果列车离开99%的时间, 那么您会猜到离开 。 如果列车转行, 那么您会换个猜想 。 如果列车每走三次, 您也会猜到同样的情况 。

换句话说,你试图找出一个模式 并遵循它。这或多或少是分支预测器的工作方式。

大多数应用程序都有良好的分支。 因此,现代分支预测器通常会达到超过90%的冲击率。 但是,当面对无法预见且没有可识别模式的分支时,分支预测器几乎毫无用处。

进一步读作:维基百科的“Branch 预测器”文章.


正如上面所暗示的,罪魁祸首就是这个说法:

if (data[c] >= 128)
    sum += data[c];

请注意数据分布在 0 和 255 之间。 当对数据进行分类时, 大约前半段的迭代不会输入 if 语句 。 在此之后, 它们都会输入 if 语句 。

这是对分支预测器非常友好的, 因为分支连续向同一方向运行很多次。 即使是简单的饱和计数器也会正确预测分支, 除了在切换方向之后的几处迭代之外 。

快速可视化 :

T = branch taken
N = branch not taken

data[] = 0, 1, 2, 3, 4, ... 126, 127, 128, 129, 130, ... 250, 251, 252, ...
branch = N  N  N  N  N  ...   N    N    T    T    T  ...   T    T    T  ...

       = NNNNNNNNNNNN ... NNNNNNNTTTTTTTTT ... TTTTTTTTTT  (easy to predict)

然而,当数据完全随机时,分支预测器就变得毫无用处,因为它无法预测随机数据。因此,可能会有大约50%的误用(没有比随机猜测更好的了 ) 。

data[] = 226, 185, 125, 158, 198, 144, 217, 79, 202, 118,  14, 150, 177, 182, ...
branch =   T,   T,   N,   T,   T,   T,   T,  N,   T,   N,   N,   T,   T,   T  ...

       = TTNTTTTNTNNTTT ...   (completely random - impossible to predict)

能够做些什么?

如果编译者无法将分支优化为有条件的动作, 您可以尝试一些黑客, 如果您愿意牺牲可读性来表现 。

替换:

if (data[c] >= 128)
    sum += data[c];

与:

int t = (data[c] - 128) >> 31;
sum += ~t & data[c];

这将清除分支, 并替换为一些位元操作 。

(注意这个黑客并不完全等同原始的如果声明。 但在这种情况下,它对于所有输入值都有效。data[].)

基准:核心i7 920@3.5千兆赫

C++ - 2010 - x64 释放

假设情景 时间( 秒)
分处 - 随机数据 11.777
分支 - 分类数据 2.352
无分支 - 随机数据 2.564
无分支 - 排序数据 2.587

Java - Netbeans 7.1.1 JDK 7 - x64

假设情景 时间( 秒)
分处 - 随机数据 10.93293813
分支 - 分类数据 5.643797077
无分支 - 随机数据 3.113581453
无分支 - 排序数据 3.186068823

意见:

  • 与该处:分类和未分类数据之间存在巨大差异。
  • 与哈克人:分类的数据和未分类的数据没有区别。
  • 在 C++ 案中, 黑客的进位实际上比数据排序时的分支慢。

拇指的一般规则是避免在关键循环(如本例)中出现依赖数据的分支。


更新 :

  • GCC 4.6.1 和-O3-ftree-vectorize在 x64 上能够生成一个有条件的移动, 所以分类的数据和未分类的数据之间没有区别, 两者都是快速的 。

    (或稍快:对于已经分类的案件,cmov特别是如果海合会将海合会置于关键道路上,而不是公正add特别是英特尔 之前的英特尔 Broadwellcmov有2个周期的延迟:gcc 优化标记 -O3 使代码慢于 -O2)

  • VC++/2010 即使在/Ox.

  • Intel C+++ 编译器(ICC) 11 做了奇迹般的事情。交换两个循环从而将无法预测的分支拉到外环。 它不仅能避免错误, 而且速度是 VC++ 和 GCC 所能生成的两倍。 换句话说, ICC 利用试流击败基准...

  • 如果您给 Intel 编译者无分支代码, 它会直接向导它... 并且和分支( 循环交换) 一样快 。

这表明即使是成熟的现代编译者 在优化代码的能力上 也会大不相同...

巴恩·斯特鲁斯特鲁斯特鲁普的回答对此问题:

这听起来像面试问题。是真的吗?你怎么知道?回答效率问题而不首先做一些测量是不明智的,所以知道如何衡量是很重要的。

于是,我用百万整数的矢量尝试过,然后得到:

Already sorted    32995 milliseconds
Shuffled          125944 milliseconds

Already sorted    18610 milliseconds
Shuffled          133304 milliseconds

Already sorted    17942 milliseconds
Shuffled          107858 milliseconds

我跑了好几次才确定。 是的,这个现象是真实的。我的关键代码是:

void run(vector<int>& v, const string& label)
{
    auto t0 = system_clock::now();
    sort(v.begin(), v.end());
    auto t1 = system_clock::now();
    cout << label
         << duration_cast<microseconds>(t1 — t0).count()
         << " milliseconds\n";
}

void tst()
{
    vector<int> v(1'000'000);
    iota(v.begin(), v.end(), 0);
    run(v, "already sorted ");
    std::shuffle(v.begin(), v.end(), std::mt19937{ std::random_device{}() });
    run(v, "shuffled    ");
}

至少这个编译器、 标准库和优化设置是真实存在的。 不同的执行可以而且确实提供了不同的答案。 事实上,有人做了更系统的研究( 快速的网络搜索会找到它) , 而大多数执行都显示了这种效果。

其中一个原因是分支预测: 类算法中的关键操作是“if(v[i] < pivot]) …”对于排序序列,测试总是真实的,而对于随机序列,选定的分支则随机变化。

另一个原因是,当矢量已经分类后,我们从不需要将元素移到正确位置。这些小细节的影响是我们看到的5或6个系数。

Quicksort(以及一般分类)是一项复杂的研究,吸引了计算机科学中最伟大的一些思想。 一种良好的功能是选择良好的算法和关注硬件的运行效果的结果。

如果您想要写入高效代码, 您需要了解一些关于机器结构的知识 。

是关于分支预测的 是什么?

  • 分支预测器是古老的改进性能的技术之一,在现代建筑中仍然具有相关性。 虽然简单的预测技术能提供快速搜索和电力效率,但它们的误判率很高。

  • 另一方面,复杂的分支预测 — — 无论是基于神经的预测还是两级分支预测的变异 — — 提供了更好的预测准确性,但是它们消耗更多的能量和复杂性会成倍增加。

  • 此外,在复杂的预测技术中,预测分支所需的时间本身非常高 — — 从2到5个周期不等 — — 这与实际分支的执行时间相当。

  • 部门预测基本上是一个优化(最小化)问题,重点是实现尽可能低的误差率、低电耗和最低资源复杂性低。

确实有三种不同的分支:

附加条件的分支- 根据运行时间条件,PC(程序表计数器)被修改为指示流中前方的地址。

后向附加条件分支- PC被修改为指令流的后向点。分支基于某种条件,例如当循环结束时的测试显示循环应该再次执行时,分支会向后到程序循环开始处。

无条件分支- 包括跳跃、程序呼叫和没有特定条件的返回。 例如, 无条件跳跃指令可能以组合语言编码为简单的“ jmp ” , 且指令流必须直接指向跳跃指令指向的目标位置, 而有条件跳跃, 代号为“ jmpne ” , 只有在对先前“ 比较” 指令中两个数值进行比较的结果显示数值不相等时, 才会改变教学流的方向。 (x86 结构使用的分段处理方案增加了额外的复杂度, 因为跳跃可以是“ 接近” (在段内) , 也可以是“ 远” (在段外) 。 每种类型都对分支预测算法有不同的影响 。

静态/动力支部:微处理器在第一次遇到有条件的分支时使用静态分支预测,而动态分支预测用于随后执行有条件的分支代码。

参考文献:

以上行为之所以发生 是因为分局的预测

要理解分支预测,首先必须了解指令管道。

运行一个指令的步骤可以与运行上一个和下一个指令的步骤序列相重叠,这样可以同时同时执行不同的步骤。 这种技术被称为指令管衬,用来增加现代处理器的输送量。 要更好地了解这一点,请看维基百科的示例.

一般而言,现代处理器有相当长(和宽)的管道,因此许多教学可能正在飞行中。现代微处理器 A 90-minute指南!首先是引入基本自序管管,然后从那里开始。

但为容易,让我们考虑一个简单的 单用这四个步骤的单向输油管。
(像经典的5级RIRC,但忽略了单独的MEM阶段。 ))

  1. IF -- -- 从内存获取指令
  2. ID - 解码指令
  3. EX - 执行指令
  4. WB - 回写到 CPU 注册簿

一般为2项指示提供4级输油管。
4-stage pipeline in general

回到上述问题,让我们考虑以下指示:

                        A) if (data[c] >= 128)
                                /\
                               /  \
                              /    \
                        true /      \ false
                            /        \
                           /          \
                          /            \
                         /              \
              B) sum += data[c];          C) for loop or print().

如果没有部门预测,将出现下列情况:

要执行指令B或指令C,处理器必须等待(缓档直至指示A离开输油管中的EX阶段,因为进入指示B或指示C的决定取决于指示A的结果(即从何处取取取)。

无预测:何时if条件为真 : enter image description here

无预测:何时if条件为假 : enter image description here

由于等待指示A的结果,在上述情况下(没有分支预测;对真实和假的预测)所花的CPU周期总数为7个。

那么什么是分支预测?

分支预测器将尝试猜测分支( 如果- 如果- 如果- 如果- else 结构) 将往哪个方向走, 然后再确定这一点。 它不会等待指令 A 到达管道的 EX 阶段, 而是会猜测决定并转到该指令( 以我们为例 ) ( B 或 C ) 。

如果猜对了,输油管看起来是这样的: enter image description here

如果后来发现猜测是错误的,那么部分执行的指示就会被丢弃,管道从正确的分支开始,造成延误。如果分支错误,浪费的时间相当于管道从取货阶段到执行阶段的阶段数。现代微处理器往往有相当长的管道,因此错误处理的延迟时间在10到20小时的周期之间。输油管越长,对货物的需求就越大。分支分支预测器.

在业务方案代码中,这是有条件的、分支预测员第一次没有任何信息作为预测基础,因此第一次随机选择下一个指令。 (或返回到后方)静静在循环中,它可以将预测建立在历史之上。对于按升序排序的阵列,有三种可能性:

  1. 所有元素小于 128
  2. 所有元素大于 128
  3. 一些开始的新元素还不到128个,后来则大于128个

让我们假设预测器 将总是假设 真正的分支 在第一个运行。

因此,在第一种情况下,它总是要真正的分支,因为历史上它所有的预测都是正确的。 在第二种情况下,它最初预测错误,但经过几次反复,它会正确预测。 在第二种情况下,它最初将正确预测,直到元素低于128。 之后,它会失败一段时间,当它看到分支预测在历史上失败时,它会失败一段时间,它会正确。

在所有这些情况下,失败的数量将太少,因此,只需放弃部分执行的指示,从正确的分支重新开始,就只需要放弃部分执行的指示的几次,导致CPU周期减少。

但如果是随机的未排序数组,预测将需要丢弃部分执行的指示,然后大部分时间以正确的分支重新开始,结果与分类数组相比,CPU周期会增加。


进一步读作:

  • 现代微处理器 A 90-minute指南!
  • Dan Luu关于分支预测的文章(涵盖较老的分支预测器,而不是现代的IT-TAGE或倍数)
  • https://en.wikipedia.org/wiki/Branch_predictor
  • 处处预测和口译员的工作表现 -- -- 不相信民俗- 2015年,Intel's Haswell在预测Python口译员主循环的间接分支(由于不简单模式,历史上存在问题)方面表现如何,相对于未使用 IT-TAGE 的早期CPU。 (虽然他们不帮助完全随机的这个案例。如果在Skylake CPU的环中,当源被编译为分支时,如果在环中,Skylake CPU的误判率仍为50%。 )
  • 最新 Intel 处理器的静态分支预测- CPUs在运行分支指令时实际做什么,该指令没有动态预测。ifbreak)))后取(像环状)已被使用,因为它比什么都没有好。 设置代码, 这样快速路径/ 普通大小写最小化的分支对 I -cache 密度和静态预测都有好处, 所以编译者已经这样做了 。实际效果联 联 年 月 日 月 日 月 月 日 月 月 日 月 月 月 日 月 月 日 月 月 日 月 月 月 日 月 月 日 月 月 月 日 月 的 月 月 月 日 月 月 日 月 的 月 月 月 月 日 月 月 月likely / unlikely在 C 源中提示, 而不是在大多数 CPU 中暗示硬件分支预测, 除了通过静态预测。 )