我想将JSON数据转换为Python对象。
我从Facebook API收到JSON数据对象,我想将其存储在数据库中。
我的当前视图在Django (Python)(请求。POST包含JSON):
response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()
这很好,但是如何处理复杂的JSON数据对象呢?
如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?
使用python 3.7,我发现下面的代码非常简单有效。在本例中,将JSON从文件加载到字典中:
class Characteristic:
def __init__(self, characteristicName, characteristicUUID):
self.characteristicName = characteristicName
self.characteristicUUID = characteristicUUID
class Service:
def __init__(self, serviceName, serviceUUID, characteristics):
self.serviceName = serviceName
self.serviceUUID = serviceUUID
self.characteristics = characteristics
class Definitions:
def __init__(self, services):
self.services = []
for service in services:
self.services.append(Service(**service))
def main():
parser = argparse.ArgumentParser(
prog="BLEStructureGenerator",
description="Taking in a JSON input file which lists all of the services, "
"characteristics and encoded properties. The encoding takes in "
"another optional template services and/or characteristics "
"file where the JSON file contents are applied to the templates.",
epilog="Copyright Brown & Watson International"
)
parser.add_argument('definitionfile',
type=argparse.FileType('r', encoding='UTF-8'),
help="JSON file which contains the list of characteristics and "
"services in the required format")
parser.add_argument('-s', '--services',
type=argparse.FileType('r', encoding='UTF-8'),
help="Services template file to be used for each service in the "
"JSON file list")
parser.add_argument('-c', '--characteristics',
type=argparse.FileType('r', encoding='UTF-8'),
help="Characteristics template file to be used for each service in the "
"JSON file list")
args = parser.parse_args()
definition_dict = json.load(args.definitionfile)
definitions = Definitions(**definition_dict)
如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。
使用示例:
from pydantic import BaseModel
from datetime import datetime
class Item(BaseModel):
field1: str | int # union
field2: int | None = None # optional
field3: str = 'default' # default values
class User(BaseModel):
name: str | None = None
username: str
created: datetime # default type converters
items: list[Item] = [] # nested complex types
data = {
'name': 'Jane Doe',
'username': 'user1',
'created': '2020-12-31T23:59:00+10:00',
'items': [
{'field1': 1, 'field2': 2},
{'field1': 'b'},
{'field1': 'c', 'field3': 'override'}
]
}
user: User = User(**data)
要了解更多细节和特性,请查看文档中的pydantic的rational部分。
这里有一个快速而肮脏的json pickle替代方案
import json
class User:
def __init__(self, name, username):
self.name = name
self.username = username
def to_json(self):
return json.dumps(self.__dict__)
@classmethod
def from_json(cls, json_str):
json_dict = json.loads(json_str)
return cls(**json_dict)
# example usage
User("tbrown", "Tom Brown").to_json()
User.from_json(User("tbrown", "Tom Brown").to_json()).to_json()
这似乎是一个XY问题(问A实际问题在哪里B)。
问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?
使用抢
from glom import glom
# Basic deep get
data = {'a': {'b': {'c': 'd'}}}
print(glom(data, 'a.b.c'))
它还将处理列表项:
我已经对一个简单的实现进行了基准测试:
def extract(J, levels):
# Twice as fast as using glom
for level in levels.split('.'):
J = J[int(level) if level.isnumeric() else level]
return J
... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。
它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'
编辑:
另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:
class Ob:
def __init__(self, J):
self.J = J
def __getitem__(self, index):
return Ob(self.J[index])
def __getattr__(self, attr):
value = self.J.get(attr, None)
return Ob(value) if type(value) in (list, dict) else value
现在你可以做:
ob = Ob(J)
# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf
# for intermediate values
ob.foo.bar[42].quux.J
这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!
已经有多种可行的答案,但有一些由个人制作的小型库可以满足大多数用户的需求。
json2object就是一个例子。给定一个已定义的类,它将json数据反序列化到您的自定义模型,包括自定义属性和子对象。
它的使用非常简单。一个来自图书馆wiki的例子:
从json2object导入jsontoobject作为Jo
类学生:
def __init__(自我):
自我。firstName =无
自我。lastName = None
自我。courses =[课程(")]
类课程:
定义__init__(self, name):
Self.name = name
数据= " '{
“firstName”:“詹姆斯”,
“姓”:“债券”,
“课程”:[{
“名称”:“战斗”},
{
“名称”:“射击”}
]
}
“‘
model = Student()
Result = jo.deserialize(数据,模型)
print (result.courses [0] . name)