以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
不是一个单行,但看到所有的答案在这里,我猜这个漫长的列表错过了一些模式匹配,所以在这里它是:)
这两种方法可能不是有效的,但无论如何,它很容易阅读(至少对我来说,也许我被功能编程所困扰):
def flat(x):
match x:
case []:
return []
case [[*sublist], *r]:
return [*sublist, *flat(r)]
第二版考虑了列表列表的列表......不管什么:
def flat(x):
match x:
case []:
return []
case [[*sublist], *r]:
return [*flat(sublist), *flat(r)]
case [h, *r]:
return [h, *flat(r)]
其他回答
這裡有一個通用方法,適用於數字、線條、粘列表和混合容器,這可以讓簡單和複雜的容器混合起來(請參閱Demo)。
代码
from typing import Iterable
#from collections import Iterable # < py38
def flatten(items):
"""Yield items from any nested iterable; see Reference."""
for x in items:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
for sub_x in flatten(x):
yield sub_x
else:
yield x
笔记:
在 Python 3 中,从 flatten(x) 获取可以取代 sub_x 在 flatten(x): 获取 sub_x 在 Python 3.8 中,从 collection.abc 转移到输入模块。
演示
simple = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
list(flatten(simple))
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
complicated = [[1, [2]], (3, 4, {5, 6}, 7), 8, "9"] # numbers, strs, nested & mixed
list(flatten(complicated))
# [1, 2, 3, 4, 5, 6, 7, 8, '9']
参考
此解決方案是從 Beazley, D. 和 B. Jones. Recipe 4.14, Python Cookbook 3rd Ed., O'Reilly Media Inc. Sebastopol, CA: 2013 發現以前的 SO 帖子,可能是原來的展示。
您也可以使用NumPy的公寓:
import numpy as np
list(np.array(l).flat)
它只有在超级列表具有相同的尺寸时才有效。
对于包含多个列表的列表,这里是一个重复的解决方案,为我工作,我希望它是正确的:
# Question 4
def flatten(input_ls=[]) -> []:
res_ls = []
res_ls = flatten_recursive(input_ls, res_ls)
print("Final flatten list solution is: \n", res_ls)
return res_ls
def flatten_recursive(input_ls=[], res_ls=[]) -> []:
tmp_ls = []
for i in input_ls:
if isinstance(i, int):
res_ls.append(i)
else:
tmp_ls = i
tmp_ls.append(flatten_recursive(i, res_ls))
print(res_ls)
return res_ls
flatten([0, 1, [2, 3], 4, [5, 6]]) # test
flatten([0, [[[1]]], [[2, 3], [4, [[5, 6]]]]])
出口:
[0, 1, 2, 3]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
Final flatten list solution is:
[0, 1, 2, 3, 4, 5, 6]
[0, 1]
[0, 1]
[0, 1]
[0, 1, 2, 3]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
[0, 1, 2, 3, 4, 5, 6]
Final flatten list solution is:
[0, 1, 2, 3, 4, 5, 6]
根據您的列表(1, 2, 3), [4, 5, 6], [7], [8, 9] 是 1 列表水平,我們可以簡單地使用數量(列表),而不使用任何圖書館。
sum([[1, 2, 3], [4, 5, 6], [7], [8, 9]],[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
延伸此方法的优势,当内部存在一个<unk>或数字时,简单地将每个元素的地图函数添加到列表中
#For only tuple
sum(list(map(list,[[1, 2, 3], (4, 5, 6), (7,), [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
#In general
def convert(x):
if type(x) is int or type(x) is float:
return [x]
else:
return list(x)
sum(list(map(convert,[[1, 2, 3], (4, 5, 6), 7, [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
在这里,有一个明确的解释的缺点在记忆的这个方法。 简而言之,它重复创建列表对象,应该避免( )
def flatten(itr):
for x in itr:
try:
yield from flatten(x)
except TypeError:
yield x
使用:这是一个发电机,通常你想将它插入一个不可分割的构建器,如列表()或<<<<<<<<或使用它在一个为旋转。
这个解决方案的好处是:
工作任何类型的无缝(即使是未来的!)工作任何组合和深度的无缝工作,如果顶级包含无依赖物品,快速和高效(你可以平滑无缝的部分,没有浪费时间的剩余部分你不需要)多样性(你可以使用它来构建一个无缝的你的选择或在旋转)
注:由于所有 iterables 都是浮动的,所以线条分为单个字符的序列. 如果您不喜欢/不喜欢这种行为,您可以使用下列版本,从浮动的 iterables 如线条和比特中进行过滤:
def flatten(itr):
if type(itr) in (str,bytes):
yield itr
else:
for x in itr:
try:
yield from flatten(x)
except TypeError:
yield x