周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

正确的字符串数据结构。几乎每个程序员都满足于一种语言对结构的任何原生支持,而这种支持通常是低效的(尤其是对于构建字符串,你需要一个单独的类或其他东西)。

最糟糕的是将字符串作为C中的字符数组,并依赖NULL字节来确保安全。

其他回答

跳过列表非常整洁。

维基百科跳过列表是一种概率数据结构,基于多个并行、排序的链接列表,其效率与二进制搜索树相当(大多数操作的顺序日志n平均时间)。

它们可以作为平衡树的替代(使用概率平衡而不是严格执行平衡)。它们很容易实现,而且比红黑树更快。我认为他们应该在每一个优秀的程序员工具箱中。

如果你想深入了解跳过列表,这里有一个麻省理工学院算法简介讲座视频的链接。

此外,这里还有一个Java小程序,直观地演示了跳过列表。

Kd-Trees是实时光线跟踪中使用的空间数据结构,它的缺点是需要裁剪与不同空间交叉的三角形。一般来说,BVH更快,因为它们更轻。MX-CIF四叉树,通过将规则四叉树与四叉树边缘的二叉树组合,存储边界框而不是任意点集。HAMT,由于所涉及的常数,访问时间通常超过O(1)个哈希图的分层哈希图。反向索引,在搜索引擎界非常有名,因为它用于快速检索与不同搜索词相关的文档。

大多数(如果不是全部)记录在NIST算法和数据结构词典中

环境跟踪递归结构。

编译器使用递归但不像树的结构。内部作用域有一个指向封闭作用域的指针,因此嵌套是由内向外的。验证变量是否在范围内是从内部范围到封闭范围的递归调用。

public class Env
{    
    HashMap<String, Object> map;
    Env                     outer;

    Env()
    {
        outer = null;
        map = new HashMap();
    }

    Env(Env o)
    {
        outer = o;
        map = new HashMap();
    }

    void put(String key, Object value)
    {
        map.put(key, value);
    }

    Object get(String key)
    {
        if (map.containsKey(key))
        {
            return map.get(key);
        }
        if (outer != null)
        {
            return outer.get(key);
        }
        return null;
    }

    Env push()
    {
        return new Env(this);
    }

    Env pop()
    {
        return outer;
    }
}

我不确定这个结构是否有名字。我称之为一份由内而外的清单。

有一种巧妙的数据结构,它使用数组来保存元素的数据,但数组在链接列表/数组中链接在一起。

这确实具有这样的优点,即对元素的迭代非常快(比纯链接列表方法更快),并且在内存和/或(去)分配中移动带有元素的数组的成本最低。(正因为如此,此数据结构对于模拟工作非常有用)。

我从这里知道:

http://software.intel.com/en-us/blogs/2010/03/26/linked-list-verses-array/

“……并且一个额外的数组被分配并链接到粒子数组的单元格列表中。这在某些方面类似于TBB实现其并发容器的方式。”(这是关于链接列表与数组的性能)

Van Emde Boas树

我想知道它们为什么很酷会很有用。一般来说,“为什么”这个问题是最重要的;)

我的答案是,他们给你O(log-logn)字典,其中包含{1..n}个键,而与使用的键的数量无关。就像重复减半得到O(log n)一样,重复平方得到O(log-log n),这就是vEB树中发生的情况。