周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。

其他回答

DAWG是一种特殊的Trie,其中类似的子树被压缩为单亲。我扩展了修改后的DAWG,并提出了一个漂亮的数据结构ASSDAWG(Anagram Search Sorted DAWG)。这种工作方式是,每当将字符串插入DAWG时,首先对其进行桶排序,然后插入,叶节点保存一个额外的数字,指示如果我们从根到达该叶节点,哪些排列是有效的。这有两大优点:

由于我在插入之前对字符串进行排序,并且DAWG自然会折叠类似的子树,所以我得到了高级别的压缩(例如,“吃”、“吃”和“茶”都变成了一条路径a-e-t,在叶节点处有一个数字列表,指示a-e-t的哪些排列是有效的)。搜索给定字符串的变位现在是非常快速和简单的,因为从根到叶的路径使用排列数保存了叶节点处该路径的所有有效变位。

Burrows–Wheeler变换(块排序压缩)

它是压缩的基本算法。假设您想压缩文本文件中的行。你会说,如果你对行进行排序,你就失去了信息。但BWT是这样工作的——它通过对输入进行排序,保持整数索引以恢复原始顺序,从而大大降低了熵。

芬威克树。这是一种数据结构,用于计算向量中两个给定的子索引i和j之间的所有元素的总和。简单的解决方案是,从开始时就预先计算总和,不允许更新项目(必须做O(n)工作才能跟上)。

Fenwick Trees允许您在O(logn)中更新和查询,它的工作方式非常简单。芬威克的原始论文对这一点做了很好的解释,可以在这里免费获得:

http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol24/issue3/spe884.pdf

它的父亲RQM树也很酷:它允许您保存关于向量的两个索引之间的最小元素的信息,它还可以在O(logn)更新和查询中工作。我喜欢先教RQM,然后教芬威克树。

多边形网格的半边数据结构和翼边。

适用于计算几何算法。

我认为保罗·费拉吉纳和乔凡尼·曼奇尼的FM指数真的很酷。尤其是在生物信息学方面。它本质上是一个压缩的全文索引,利用了后缀数组和参考文本的burrows-wheeler变换的组合。可以在不解压缩整个索引的情况下搜索索引。