周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

XOR链表使用两个XOR'd指针来减少双链表的存储需求。有点晦涩但整洁!

其他回答

我有时使用反转列表来存储范围,它们通常用于在正则表达式中存储字符类。例如,请参见http://www.ibm.com/developerworks/linux/library/l-cpinv.html

另一个很好的用例是加权随机决策。假设你有一个符号和相关概率的列表,你想根据这些概率随机选择它们

   a => 0.1
   b => 0.5
   c => 0.4

然后,你对所有概率进行一次连续求和:

  (0.1, 0.6, 1.0)

这是你的反转列表。生成一个介于0和1之间的随机数,并查找列表中下一个较高条目的索引。你可以用二进制搜索来实现,因为它是排序的。一旦获得了索引,就可以在原始列表中查找符号。

如果有n个符号,则每个随机选择的符号都有O(n)个准备时间,然后是O(log(n))个访问时间,与权重分布无关。

反转列表的一种变体使用负数来指示范围的端点,这使得计算某一点上有多少范围重叠变得容易。看见http://www.perlmonks.org/index.pl?node_id=841368例如。

角落缝合的数据结构。根据总结:

拐角缝合是一种用于表示矩形二维对象。看起来特别适合VLSI交互式编辑系统布局。数据结构有两个重要特征:第一,空白明确表示;第二,矩形区域被缝合在他们的角落像一个拼缝被子。此组织快速算法的结果(线性时间或更好),创建、删除、拉伸和压实。算法如下以简化模型VLSI电路和存储器结构要求如下讨论。测量结果表明拐角缝合要求大约三倍尽可能简单的存储空间代表。

芬威克树。这是一种数据结构,用于计算向量中两个给定的子索引i和j之间的所有元素的总和。简单的解决方案是,从开始时就预先计算总和,不允许更新项目(必须做O(n)工作才能跟上)。

Fenwick Trees允许您在O(logn)中更新和查询,它的工作方式非常简单。芬威克的原始论文对这一点做了很好的解释,可以在这里免费获得:

http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol24/issue3/spe884.pdf

它的父亲RQM树也很酷:它允许您保存关于向量的两个索引之间的最小元素的信息,它还可以在O(logn)更新和查询中工作。我喜欢先教RQM,然后教芬威克树。

空间索引,特别是R-树和KD树,有效地存储空间数据。它们适用于地理地图坐标数据和VLSI位置和路线算法,有时也适用于最近邻搜索。

位阵列紧凑地存储单个位,并允许快速位操作。

斐波那契堆

它们被用于一些已知的最快算法(渐近)中,用于许多与图相关的问题,例如最短路径问题。Dijkstra的算法在标准二进制堆的O(E log V)时间内运行;使用斐波那契堆将其提高到O(E+V log V),这对于密集图来说是一个巨大的加速。然而,不幸的是,它们有一个很高的恒定因子,往往使它们在实践中不切实际。