周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

它非常特定于领域,但半边缘数据结构非常整洁。它提供了一种在多边形网格(面和边)上迭代的方法,这在计算机图形和计算几何中非常有用。

其他回答

我以前和WPL Trees一起过得很好。最小化分支加权路径长度的树变体。权重由节点访问决定,以便频繁访问的节点迁移到更靠近根的位置。不知道它们与八字树相比如何,因为我从未使用过。

Van Emde Boas树。我甚至有一个C++实现,最多支持2^20个整数。

增强的哈希算法非常有趣。线性哈希很简单,因为它允许一次在哈希表中拆分一个“桶”,而不是重新哈希整个表。这对于分布式缓存特别有用。然而,对于大多数简单的拆分策略,您最终会快速连续地拆分所有存储桶,并且表的负载系数波动非常严重。

我认为螺旋哈希法也很好。与线性哈希一样,一次拆分一个存储桶,存储桶中的记录只有不到一半被放入同一个新存储桶中。它非常干净和快速。然而,如果每个“桶”都由具有类似规格的机器托管,则效率可能很低。为了充分利用硬件,您需要混合使用功能较弱和功能更强的机器。

您可以使用最小堆来在恒定时间内找到最小元素,或者使用最大堆来找到最大元素。但如果你想同时做这两项操作呢?可以使用“最小值-最大值”在恒定时间内执行这两个操作。它通过使用最小-最大排序来工作:在连续树级别之间交替进行最小和最大堆比较。

空间索引,特别是R-树和KD树,有效地存储空间数据。它们适用于地理地图坐标数据和VLSI位置和路线算法,有时也适用于最近邻搜索。

位阵列紧凑地存储单个位,并允许快速位操作。