周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

区域四叉树

(引自维基百科)

区域四叉树通过将区域分解为四个相等的象限、子象限等来表示二维空间的分区,每个叶节点包含对应于特定子区域的数据。树中的每个节点要么正好有四个子节点,要么没有子节点(叶节点)。

像这样的四叉树很适合存储空间数据,例如纬度和经度或其他类型的坐标。

这是我在大学里最喜欢的数据结构。对这家伙进行编码并看到它的工作非常酷。如果你正在寻找一个需要思考并且有点偏离常规的项目,我强烈建议你这样做。无论如何,它比通常在数据结构类中分配的标准BST派生工具有趣得多!

事实上,作为奖励,我在这里找到了(弗吉尼亚理工大学的)课堂项目前的演讲笔记(pdf警告)。

其他回答

我真的很喜欢间隔树。它们允许您获取一组时间间隔(即开始/结束时间或其他时间),并查询哪些时间间隔包含给定时间,或哪些时间间隔在给定时间段内“活动”。查询可以在O(log n)中完成,预处理是O(n log n)。

持久数据结构

Scapegoat树。普通二叉树的一个典型问题是它们变得不平衡(例如,当按升序插入键时)

平衡二叉树(AKA AVL树)在每次插入后都会浪费大量时间进行平衡。

红黑树保持平衡,但每个节点都需要额外的存储空间。

Scapegoat树像红黑树一样保持平衡,但不需要任何额外的存储。他们通过在每次插入后分析树并进行微小调整来实现这一点。看见http://en.wikipedia.org/wiki/Scapegoat_tree.

区域四叉树

(引自维基百科)

区域四叉树通过将区域分解为四个相等的象限、子象限等来表示二维空间的分区,每个叶节点包含对应于特定子区域的数据。树中的每个节点要么正好有四个子节点,要么没有子节点(叶节点)。

像这样的四叉树很适合存储空间数据,例如纬度和经度或其他类型的坐标。

这是我在大学里最喜欢的数据结构。对这家伙进行编码并看到它的工作非常酷。如果你正在寻找一个需要思考并且有点偏离常规的项目,我强烈建议你这样做。无论如何,它比通常在数据结构类中分配的标准BST派生工具有趣得多!

事实上,作为奖励,我在这里找到了(弗吉尼亚理工大学的)课堂项目前的演讲笔记(pdf警告)。

不是真正的数据结构;这更像是优化动态分配阵列的一种方式,但Emacs中使用的间隙缓冲区有点酷。