周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

Gerth Stølting Brodal和Chris Okasaki的自助倾斜二项式堆:

尽管它们的名字很长,但即使在函数设置中,它们也提供了渐近最优的堆操作。

O(1)尺寸,接头,插入件,最小值O(log n)删除最小值

注意,union需要O(1)而不是O(log n)时间,这与数据结构教科书中通常包含的更为知名的堆(如左派堆)不同。与斐波那契堆不同,这些渐近线是最坏的情况,而不是摊销,即使持续使用!

Haskell中有多种实现。

在Brodal提出了一个具有相同渐近线的命令堆之后,它们由Brodal和Okasaki共同导出。

其他回答

Kd-Trees是实时光线跟踪中使用的空间数据结构,它的缺点是需要裁剪与不同空间交叉的三角形。一般来说,BVH更快,因为它们更轻。MX-CIF四叉树,通过将规则四叉树与四叉树边缘的二叉树组合,存储边界框而不是任意点集。HAMT,由于所涉及的常数,访问时间通常超过O(1)个哈希图的分层哈希图。反向索引,在搜索引擎界非常有名,因为它用于快速检索与不同搜索词相关的文档。

大多数(如果不是全部)记录在NIST算法和数据结构词典中

BK树或Burkhard Keller树是一种基于树的数据结构,可用于快速查找字符串的近似匹配项。

任何有3D渲染经验的人都应该熟悉BSP树。通常,这是一种通过构造3D场景来进行渲染的方法,该方法可以在知道相机坐标和方位的情况下进行管理。

二进制空间分区(BSP)是一种递归细分a的方法通过超平面将空间划分为凸集。该细分产生通过方法表示场景树数据结构的BSP树。换句话说,这是一种方法形状复杂的破碎多边形转化为凸集,或更小多边形完全由非反射角(小于180°). 更一般的描述空间分区,请参见空间分区。最初,提出了这种方法在3D计算机图形方面渲染效率。其他一些应用程序包括执行具有形状的几何操作(构造实体几何),机器人和3D中的碰撞检测计算机游戏和其他计算机涉及处理的应用程序复杂的空间场景。

Scapegoat树。普通二叉树的一个典型问题是它们变得不平衡(例如,当按升序插入键时)

平衡二叉树(AKA AVL树)在每次插入后都会浪费大量时间进行平衡。

红黑树保持平衡,但每个节点都需要额外的存储空间。

Scapegoat树像红黑树一样保持平衡,但不需要任何额外的存储。他们通过在每次插入后分析树并进行微小调整来实现这一点。看见http://en.wikipedia.org/wiki/Scapegoat_tree.

空间索引,特别是R-树和KD树,有效地存储空间数据。它们适用于地理地图坐标数据和VLSI位置和路线算法,有时也适用于最近邻搜索。

位阵列紧凑地存储单个位,并允许快速位操作。